约9260字 必修4第三章 三角恒等变换单元教学设计
案例 3.1.1两角和与差的余弦
(一)教学目标
知识目标:掌握用向量方法建立两角差的余弦公式,通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础.
能力目标:进一步理解向量法解决问题的方法,培养学生运用数学工具在实践中探索知识,进而获取知识的能力.
情感目标:培养学生探索和创新的意识,构建良好的数学思维品质.
(二)教学重点,难点
本节课的重点是使学生掌握两角和与差的余弦公式.难点是两角差的余弦公式的推导与证明.
(三)学法与教学用具
1. 学法:启发式教学
2. 教学用具:多媒体
(四)教学过程
教学环节 教学内容 师生互动 设计意图
探究
提出问题并引入新课 师:探究
生:反例:
问题: 的关系? 创设问题的情景,通过设疑,引导学生开展积极的思维活动
复习 复习有关知识,寻求解决问题的思路 复习:1。余弦的定义
在第一章三角函数的学习当中我们知道,在设角 的终边与单位圆的交点为P, 等于角 与单位圆交点的横坐标
2.能否用向量的方法求角的余弦?
师:M、N是 两边上任一点,
(显然为了简化计算,取M、N为 两边与单位圆的交点, 此时有 ) 通过复习相关知识为下面公式的推导做好铺垫。
公式的推导 公式的推导证明
公式理解和基本掌握。 如图构造角 ,终边与单位圆交于Q, ,
师:指出角 与 关系:
生:
则
师:写出点P、Q坐标
生:
带领学生推导公式:
(板书)
因为:
所以:
公式记号
通过定义的复习,在坐标系中找到差角的几何表示,利用以上的铺垫引导学生试探采用向量方法去解决问题,同时也体会到向量的工具性作用。
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源