2011年高考数学第二轮复习《三角恒等变换》专题测试
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
共22小题,约2430字。
2011年高考数学第二轮复习《三角恒等变换》专题测试
【学法导航】
1.三角函数的化简与求值、证明的难点在于众多三角公式的灵活运用和解题突破口的合理选择,要认真分析所给式子的整体结构,分析各个三角函数及角的相互关系是灵活选用公式的基础,是恰当寻找解题思维起点的关键所在
(1)化简,要求使三角函数式成为最简:项数尽量少,名称尽量少,次数尽量底,分母尽量不含三角函数,根号内尽量不含三角函数,能求值的求出值来;
(2)求值,要注意象限角的范围、三角函数值的符号之间联系与影响,较难的问题需要根据上三角函数值进一步缩小角的范围
(3)证明是利用恒等变换公式将等式的左边变同于右边,或右边变同于,或都将左右进行变换使其左右相等
2.对于三角变换公式务必要知道其推导思路,从而清晰地“看出”它们之间的联系,它们的变化形式.如, 等.从而可做到:正用、逆用、变形用自如使用各公式;三角变换公式除用来化简三角函数式外,还为研究三角函数图象及性质做准备。
3.三角函数恒等变形的基本策。
①常值代换:特别是用“1”的代换,如1=cos2θ+sin2θ=tanx·cotx=tan45°等。
②项的分拆与角的配凑。如分拆项:;
配凑角(常用角变换):、、
、、等.
③降次与升次。即倍角公式降次与半角公式升次
④化弦(切)法。将三角函数利用同角三角函数基本关系化成弦(切)。
⑤引入辅助角。asinθ+bcosθ=sin(θ+),这里辅助角所在象限由a、b的符号确定,角的值由tan=确定。
4. 三角恒等变换过程与方法,实际上是对三角函数式中的角、名、形的变换,
即(1)找差异:角、名、形的差别;(2)建立联系:角的和差关系、倍半关系等,名、形之间可以用哪个公式联系起来;(3)变公式:在实际变换过程中,往往需要将公式加以变形后运用或逆用公式,如升、降幂公式, cosα= cosβcos(α-β)- sinβsin(α-β) ,1= sin2α+cos2α,==tan(450+300)等。
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源