2015-2016学年高一数学必修3【课件+单元测试】第三章 概率(含解析)(9份)
3-1-1.ppt
3-1-2.ppt
3-1-3.ppt
3-2-1.ppt
3-2-2.ppt
3-3-1.ppt
3-3-2.ppt
~$第三章测试.doc
本章回顾3.ppt
第三章测试.doc
第三章测试
(时间:120分钟 满分:150分)
一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的)
1.先后抛掷2枚一分、二分的硬币,观察落地后硬币的正、反面情况,则下列事件包含3个基本事件的是( )
A.至少一枚硬币正面向上
B.只有一枚硬币正面向上
C.两枚硬币都是正面向上
D.两枚硬币一枚正面向上,另一枚正面向下
解析 先后抛掷2枚一分、二分的硬币,其结果有4种情形:“1正2正”、“1正2反”、“1反2正”、“1反2反”,可得“至少一枚硬币正面向上”包含3个基本事件.
答案 A
2.下列命题:
①对立事件一定是互斥事件;②若A,B为两个随机事件,则P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,则P(A)+P(B)+P(C)=1;④若事件A,B满足P(A)+P(B)=1,则A与B是对立事件.
其中正确命题的个数是( )
A.1 B.2
C.3 D.4
解析 ①正确;②不正确,当A与B是互斥事件时,才有P(A∪B)=P(A)+P(B),对于任意两个事件A,B满足P(A∪B)=P(A)+P(B)-P(AB);③也不正确.P(A)+P(B)+P(C)不一定等于1,还可能小于1;④也不正确.例如:袋中有大小相同的红、黄、黑、绿4个球,从袋中任摸一个球,设事件A={摸到红球或黄球},事件B={摸到黄球或黑球},显然事件A与B不互斥,但P(A)+P(B)=12+12=1.
答案 A
3.掷一枚均匀的硬币,如果连续抛掷1000次,那么第999次出现正面向上的概率是( )
A.1999 B.11000
C.9991000 D.12
解析 投掷一枚均匀的硬币正面向上的概率为12,它不因抛掷的次数而变化,因此抛掷一次正面向上的概率为12,抛掷第999次正面向上的概率还是12.
答案 D
4.某导演先从2个金鸡奖和3个百花奖的5位演员名单中挑选2名演主角,后又从剩下的演员中挑选1名演配角.这位导演挑选出2个金鸡奖演员和1个百花奖演员的概率为( )
A.13 B.110
C.25 D.310
解析 设2个金鸡奖演员编号为1,2,3个百花奖演员编号为3,4,5.从编号为1,2,3,4,5的演员中任选3名有10种挑选方法:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中挑选出2名金鸡奖和1名百花奖的有3种:(1,2,3),(1,2,4),(1,2,5),故所求的概率为P=310.
答案 D
5.设某厂产品的次品率为3%,估计该厂8000件产品中次品的件数为( )
A.3 B.160
C.240 D.7480
解析 次品数为8000×3%=240.
答案 C
6.有四个游戏盘,将它们水平放稳后,在上面扔一颗小玻璃球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )
解析 由几何概型概率公式知,图中中奖的概率依次是P(A)=38,P(B)=28,P(C)=26=13,P(D)=13,因此,要想增加中奖机会,应选择A盘.
答案 A
7.在线段AB上任取三个点x1,x2,x3,则x2位于x1与x3之间的概率为( )
A.12 B.13
C.14 D.1
解析 由于x1,x2,x3是任意的,它们的排列次序有:x1x2x3,x2x1x3,x2x3x1,x3x2x1,x1x3x2,x3x1x2,共6种情况.其中x2在x1与x3之间有两种情况,故所求概率为26=13.
答案 B
8.小明同学的QQ密码是由0,1,2,3,4,5,6,7,8,9这10个数字中的6个数字组成的六位数,由于长时间未登录QQ,小明忘记了密码的最后一个数字,如果小明登录QQ时密码的最后一个数字随意选取,则恰好能登录的概率是( )
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源