《二次函数》教学设计2

  • 手机网页: 浏览手机版
  • 资源类别: 人教课标版 / 高中教案 / 必修一教案
  • 文件类型: doc
  • 资源大小: 3.82 MB
  • 资源评级:
  • 更新时间: 2015/9/15 21:21:15
  • 资源来源: 会员转发
  • 资源提供: zzzysc [资源集]
  • 下载情况: 本月:获取中 总计:获取中
  • 下载点数: 获取中 下载点  如何增加下载点
  •  点此下载传统下载

资源简介:

约8230字。

  示范教案
  整体设计
  教学分析     
  在讨论二次函数性质的过程中,其图象显然起了重要作用,但是又不忽视解析式的作用.因此教材突出数与形的有机结合.高中学生,已经处于思维接近成熟的阶段,有些情况下,不能就事论事,而应该适度思考一些带有综合性的问题,但不可过分.对一般学生来说,分寸掌握到课本例题和习题的水平为宜.程度好一些的学生,当然,也可以自选一些题目来做.对于二次函数单调性证明,用文字表示对称轴、顶点、最大(小)值、单调区间等,教师应该带领学生尝试.
  三维目标     
  对一般二次函数解析式配方,确定其图象位置,并能研究其定义域、值域、单调性、最大(小)值等性质,提高学生数形结合的能力.
  重点难点     
  教学重点:二次函数的性质与图象.
  教学难点:求二次函数的值域.
  课时安排     
  1课时
  教学过程
  导入新课     
  思路1.在初中,我们已经学过了二次函数,知道其图象为抛物线,并了解其图象的开口方向、对称轴、顶点等特征,本节课进一步研究一般的二次函数的性质,引出课题.
  思路2.高考试题中,有关二次函数的题目经常出现,二次函数是高中数学最重要的函数,因此有必要对二次函数的图象和性质进行深入学习,教师引出课题.
  推进新课     
  新知探究
  提出问题
  ①画出y=2x2-4x-3的图象,根据图象讨论图象的开口方向、顶点坐标、对称轴、单调区间、最大值和最小值.
  ②画出y=-x2+4x+5的图象,根据图象讨论图象的开口方向、顶点坐标、对称轴、单调区间、最大值和最小值.
  ③讨论二次函数fx=ax2+bx+ca≠0图象的开口方向、顶点坐标、对称轴、单调区间、最大值和最小值.
  活动:学生回顾画二次函数图象的方法,思考函数的单调性、最值的几何意义.
  讨论结果:①y=2x2-4x-3=2(x-1)2-5,其图象如下图所示.
  观察图象得:开口向上;顶点A(1,-5);对称轴直线x=1;在(-∞,1]上是减少的,在[1,+∞)上是增加的;当x=1时,函数取得最小值-5.
  ②y=-x2+4x+5=-(x-2)2+9,其图象如下图所示.
  观察图象得:开口向下;顶点A(2,9);对称轴直线x=2;在(-∞,2]上是增加的,在[2,+∞)上是减少的;当x=2时,函数取得最大值9.
  ③对于二次函数f(x)=ax2+bx+c=a(x+b2a)2+4ac-b24a.
  (1)当a>0时,其图象如下图所示.

 点此下载传统下载搜索更多相关资源
  • 说明:“点此下载”为无刷新无重复下载提示方式;“传统下载”为打开新页面进行下载,有重复下载提示。
  • 提示:非零点资源点击后将会扣点,不确认下载请勿点击。
  • 我要评价有奖报错加入收藏下载帮助

下载说明:

  • 没有确认下载前请不要点击“点此下载”、“传统下载”,点击后将会启动下载程序并扣除相应点数。
  • 如果资源不能正常使用或下载请点击有奖报错,报错证实将补点并奖励!
  • 为确保所下资源能正常使用,请使用[WinRAR v3.8]或以上版本解压本站资源。
  • 站内部分资源并非原创,若无意中侵犯到您的权利,敬请来信联系我们。

资源评论

共有 0位用户发表了评论 查看完整内容我要评价此资源