《勾股定理》导学案
- 资源简介:
约5510字。
《17.1勾股定理》导学案(1)
【学习目标】:1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2.培养在实际生活中发现问题总结规律的意识和能力。
学习重点:勾股定理的内容及证明。
学习难点:勾股定理的证明。
学习过程
一、自学导航(课前预习)
1、直角△ABC的主要性质是:∠C=90°(用几何语言表示)
(1)两锐角之间的关系:
(2)若D为斜边中点,则斜边中线
(3)若∠B=30°,则∠B的对边和斜边:
2、勾股定理证明:
方法一;
如图,让学生剪4个全等的直角三角形,拼成如图图形,利用面积证明。
S正方形=_______________=____________________
方法二;
已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。
求证:a2+b2=c2。
分析:左右两边的正方形边长相等,则两个正方形的面积相等。
左边S=______________
右边S=_______________
左边和右边面积相等,
即: 化简可得 。
二、合作交流(小组互助)思考:
(图中每个小方格代表一个单位面积)
(2)你能发现图1-1中三个正方形A,B,C的面积之间有什么关系吗?图1-2中的呢?
由此我们可以得出什么结论?可猜想:
如果直角三角形的两直角边分别为a、b,斜边为c,那么__________________
_____________________________________________________________________。
(3)展示提升(质疑点拨)
1.在Rt△ABC中, ,
(1)如果a=3,b=4,则c=________;
(2)如果a=6,b=8,则c=________;
(3)如果a=5,b=12,则c=________;
(4) 如果a=15,b=20,则c=________.
2、下列说法正确的是( )
A.若 、 、 是△ABC的三边,则
B.若 、 、 是Rt△ABC的三边,则
C.若 、 、 是Rt△ABC的三边, , 则
D.若 、 、 是Rt△ABC的三边
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源