《分式》教案9
- 资源简介:
约1310字。
7.1 分式(2)
【教材内容分析】
本节的主要内容是:分式的基本性质。分式的基本性质是分式的约分、通分、运算等恒等变形的依据。课本通过具体的例子,用分数的基本性质引入分式的基本性质易于学生理解、接受。与传统教材不同的是课本中没有明确给出分式的符号法则,而是在想一想中渗透的,所以在教学中应注意让学生体会。
【教学目标】
1、通过类比分数的基本性质,说出分式的基本性质,并能用字母表示。
2、理解并掌握分式的基本性质和符号法则。
3、能运用分式的基本性质和符号法则对分式进行变性和约分。
【教学重点】分式的基本性制及利用基本性质进行约分
【教学难点】对符号法则的理解和应用及当分子、分母是多项式时的约分。
【教学过程】
一、类比引入,探求新知
问:下面这些式子成立吗?依据是什么?
23 =2×53×5 =1015 1642 =16÷242÷2 =821
生:分子与分母都乘以或除以同一个数,分数的值不变。
问:这个是分数的基本性质,完整吗?
补充:不为0的数。
类似地,分式也有以下基本性质:
(板书)分式的分子与分母都乘以(或除以)同一个不等于0的整式,分式的值不变。(并举例对性质中的关键词:都、同一个、不等于0的整式加以理解)
强调关键词,可举例说明,如:23 ≠223,23 ≠2435,23 ≠2030
用式子表示为AB =A×MB×M ,AB =A÷MB÷M (其中M是不等于零的整式)
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源