2014年全国各地中考数学试卷解析版分类汇编 :二次函数
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
约34500字。
2014年全国各地中考数学试卷解析版分类汇编 :二次函数
一、选择题
1. (2014•上海,第3题4分)如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是( )
A. y=x2﹣1 B. y=x2+1 C. y=(x﹣1)2 D. y=(x+1)2
考点: 二次函数图象与几何变换.
专题: 几何变换.
分析: 先得到抛物线y=x2的顶点坐标为(0,0),再得到点(0,0)向右平移1个单位得到点的坐标为(1,0),然后根据顶点式写出平移后的抛物线解析式.
解答: 解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向右平移1个单位得到点的坐标为(1,0),
所以所得的抛物线的表达式为y=(x﹣1)2.
故选C.
点评: 本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
2. (2014•四川巴中,第10题3分)已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是( )
A. abc<0 B. ﹣3a+c<0 C. b2﹣4ac≥0
D. 将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c
考点:二次函数的图象和符号特征.
分析:A.由开口向下,可得a<0;又由抛物线与y轴交于负半轴,可得c<0,然后由对称轴在y轴右侧,得到b与a异号,则可得b>0,故得abc>0.
B.根据图知对称轴为直线x=2,即 =2,得b=﹣4a,再根据图象知当x=1时,y<0,即可判断;
C.由抛物线与x轴有两个交点,可得b2﹣4ac>0;
D.把二次函数y=ax2+bx+c化为顶点式,再求出平移后的解析式即可判断.
解答:A.由开口向下,可得a<0;又由抛物线与y轴交于负半轴,可得c<0,然后由对称轴在y轴右侧,得到b与a异号,则可得b>0,故得abc>0,故本选项错误;
B.根据图知对称轴为直线x=2,即 =2,得b=﹣4a,再根据图象知当x=1时,y=a+b+c=a﹣4a+c=﹣3a+c<0,故本选项正确;
C.由抛物线与x轴有两个交点,可得b2﹣4ac>0,故本选项错误;
D.y=ax2+bx+c= ,∵ =2,∴原式= ,向左平移2个单位后所得到抛物线的解析式为 ,故本选项错误;故选:B.
点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
3. (2014•山东威海,第11题3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:
①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).
其中正确的个数是( )
A. 1 B. 2 C. 3 D. 4
考点: 二次函数图象与系数的关系.
分析: 由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解答: 解:抛物线与y轴交于原点,c=0,故①正确;
该抛物线的对称轴是: ,直线x=﹣1,故②正确;
当x=1时,y=2a+b+c,
∵对称轴是直线x=﹣1,
∴ ,b=2a,
又∵c=0,
∴y=4a,故③错误;
x=m对应的函数值为y=am2+bm+c,
x=﹣1对应的函数值为y=a﹣b+c,又x=﹣1时函数取得最小值,
∴a﹣b+c<am2+bm+c,即a﹣b<am2+bm,
∵b=2a,
∴am2+bm+a>0(m≠﹣1).故④正确.
故选:C.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源