《三角函数的诱导公式》教案7
- 资源简介:
约1420字。
1.3.1三角函数的诱导公式(一)
一、教学目标:
1.借助单位圆,推导出正弦、余弦和正切的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题
2.通过公式的应用,了解未知到已知、复杂到简单的转化过程,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力。
二、重点与难点:
重点:四组诱导公式的记忆、理解、运用。
难点:四组诱导公式的推导、记忆及符号的判断;
三、学法与教学用具:
(1)、与学生共同探讨,应用数学解决现实问题;
(2)、通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯.
四、教学过程:
创设情境:我们知道,任一角 都可以转化为终边在 内的角,如何进一步求出它的三角函数值?
我们对 范围内的角的三角函数值是熟悉的,那么若能把 内的角 的三角函数值转化为求锐角 的三角函数值,则问题将得到解决,这就是数学化归思想
研探新知
1. 诱导公式的推导
由三角函数定义可以知道:终边相同的角的同一三角函数值相等,即有公式一:
(公式一)
诱导公式(一)的作用:把任意角的正弦、余弦、正切化为 之间角的正弦、余弦、正切。
【注意】:运用公式时,注意“弧度”与“度”两种度量制不要混用,如写成
, 是不对的
【讨论】:利用诱导公式(一),将任意范围内的角的三角函数值转化到 角后,又如何将 角间的角转化到 角呢?
除此之外还有一些角,它们的终边具有某种特殊关系,如关于坐标轴对称、关于原点对称等。那么它们的三角函数值有何关系呢?
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源