《数学归纳法》教案6
- 资源简介:
约1010字。
课题:数学归纳法
一、教学目标:
1.了解数学归纳法的原理,理解数学归纳法的一般步骤。
2.掌握数学归纳法证明问题的方法,能用数学归纳法证明一些简单的数学命题
3.能通过“归纳-猜想-证明”处理问题。
二、教学重点:能用数学归纳法证明一些简单的数学命题。
难点:归纳→猜想→证明。
三、教学过程:
【创设情境】
问题1:数学归纳法的基本思想?
以数学归纳法原理为依据的演绎推理,它将一个无穷归纳(完全归纳)的过程,转化为一个有限步骤的演绎过程。(递推关系)
问题2:数学归纳法证明命题的步骤?
(1)递推奠基:当n取第一个值n0结论正确;
(2)递推归纳:假设当n=k(k∈N*,且k≥n0)时结论正确;(归纳假设)
证明当n=k+1时结论也正确。(归纳证明)
由(1),(2)可知,命题对于从n0开始的所有正整数n都正确。
数学归纳法是直接证明的一种重要方法,应用十分广泛,主要体现在与正整数有关的恒等式、不等式;数的整除性、几何问题;探求数列的通项及前n项和等问题。
【探索研究】
问题:用数学归纳法证明: 能被9整除。
法一:配凑递推假设:
法二:计算f(k+1)-f(k),避免配凑。
说明:①归纳证明时,利用归纳假设创造条件,是解题的关键。
②注意从“n=k到n=k+1”时项的变化。
【例题评析】
例1:求证: 能被 整除(n∈N+)。
例2:数列{an}中, ,a1=1且
(1)求 的值;
(2)猜想{an}的通项公式,并证明你的猜想。
说明:用数学归纳法证明问题的常用方法:归纳→猜想→证明
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源