《一元一次不等式和一元一次不等式组》复习教案
- 资源简介:
约3530字。
第五章《一元一次不等式和一元一次不等式组》复习
一、复习目标
1、通过复习,进一步了解一元一次不等式和一元一次不等式组的基本概念,了解不等式(组)的解和解集的概念.
2、理解并掌握不等式的基本性质,能运用不等式的基本性质解一元一次不等式并会在数轴上表示解集,联系、比较不等式的变形与方程变形的异同.
3、能利用数轴求出一元一次不等式组的解集.
4、能从实际问题中抽象出一元一次不等式(组),加深对数学模型的认识,体会数学化的过程,提高用数学分析和解决问题的能力.
二、重难点提示
1、重点:(1)能熟练解一元一次不等式(组).
(2)能利用一元一次不等式(组)解决实际问题.
2、难点:(1)对比一元一次不等式和一元一次方程的异同.
(2)利用好数轴这个工具.
三、知识梳理
(一)有关概念
1、一元一次不等式:只含有一个未知数,并且未知数的次数都是1的不等式叫做一元一次不等式.
2、一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组.
3、不等式(组)的解:能使不等式(组)成立的未知数的值叫做不等式(组)的解.
4、不等式(组)的解集:一个不等式(组)的所有解组成这个不等式(组)的解集.
注意 不等式(组)的解与不等式(组)的解集的关系:不等式(组)所有的解的集合组成不等式(组)的解集,不等式(组)的每一个解都是解集的一个元素.例如,x=3.5,4,7…都是不等式x+5>8的解,而x>3是这个不等式的解集.
(二) 不等式的三个基本性质
①性质1:如果a>b,那么a+c>b+c,a-c>b-c. 即不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.
②性质2:如果a>b,并且c>0,那么ac>bc.即不等式的两边都乘(或除以)同一个正数,不等号的方向不变.
③性质3:如果a>b,并且c<0,那么ac<bc. 即不等式的两边都乘(或除以)同一个负数,不等号的方向改变.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源