《分解因式》教案
- 资源简介:
约1460字。
§2.1 分解因式
教学目标
1.使学生了解因式分解的意义,知道它与整式乘法在整式变形过程中的相反关系.
2.通过观察,发现分解因式与整式乘法的关系,培养学生的观察能力和语言概括能力.
教学重点
1.理解因式分解的意义.
2.识别分解因式与整式乘法的关系.
教学难点
通过观察,归纳分解因式与整式乘法的关系.
教学目标
一、创设问题情境,引入新课
计算(a+b)(a-b)
a2-b2=(a+b)(a-b)成立吗?那么如何去推导呢?这就是我们即将学习的内容:因式分解的问题.
二、讲授新课
1.讨论993-99能被100整除吗?你是怎样想的?与同伴交流.
993-99能被100整除.
因为993-99=99×992-99
=99×(992-1)=99×9800=99×98×100
其中有一个因数为100,所以993-99能被100整除.993-99还能被哪些正整数整除?
还能被99,98,980,990,9702等整除.
从上面的推导过程看,等号左边是一个数,而等号右边是变成了几个数的积的形式.
2.议一议
你能尝试把a3-a化成n个整式的乘积的形式吗?与同伴交流.
观察a3-a与993-99这两个代数式.
3.做一做
(1)计算下列各式:
①(m+4)(m-4)=__________;
②(y-3)2=__________;
③3x(x-1)=__________;
④m(a+b+c)=__________;
⑤a(a+1)(a-1)=__________.
(2)根据上面的算式填空:
①3x2-3x=( )( );
②m2-16=( )( );
③ma+mb+mc=( )( );
④y2-6y+9=( )2.
能分析一下两个题中的形式变换吗?
在(1)中,等号左边都是乘积的形式,等号右边都是多项式;在(2)中正好相反,等号左边是多项式的形式,等号右边是整式乘积的形式.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源