《一次函数的图象》教学设计1
- 资源简介:
约3390字。
第六章一次函数
3.一次函数的图象(一)
一、学生起点分析
八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系.
二、教学任务分析
《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节.本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质.本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识.
三、教学目标分析
知识与技能目标
1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象.
过程与方法目标
1.经历函数图象的作图过程,初步了解作函数图象的一般步骤.
2.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力.
情感、态度与价值观目标
1.经历作图过程,归纳总结作函数图象的一般步骤,发展学生的总结概括能力.
2.在探究活动中发展学生的合作意识和探究能力.
教学重点
1.熟练地作一次函数的图象.
2.理解、归纳作函数图象的一般步骤:列表、描点、连线.
3.理解一次函数的代数表达式与图象之间的一一对应关系.
教学难点
理解一次函数的代数表达式与图象之间的一一对应关系.
四、教法学法
1、教学方法
讲、议、练相结合。
2、课前准备
教具:教材、多媒体课件。
学具:教材、铅笔、直尺、练习本。
五、教学过程
本节课设计了七个教学环节:
第一环节:创设情境引入课题;
第二环节:画一次函数的图象;
第三环节:动手操作,深化探索;
第四环节:巩固练习,深化理解;
第五环节:课时小结;
第六环节:拓展探究;
第七环节:作业布置.
第一环节:创设情境引入课题
内容:
一天,小明以80米/分的速度去上学,离家5分钟后,小明的父亲发现小明的语文书未带,立即以120米/分的速度去追小明,请问小明离家的距离S(米)与小明父亲出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?S=80t+400(t≥0)
下面的图象能表示上面问题中的S与t的关系吗?
我们说,上面的图象是函数S=80t+400(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象。
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源