《随机事件的概率及古典概型》复习教案
- 资源简介:
约3150字。
§9.4 随机事件的概率及古典概型
一、知识导学
1.必然事件:在一定的条件下必然要发生的事件.
不可能事件:在一定的条件下不可能发生的事件.
随机事件:在一定的条件下可能发生也可能不发生的事件.
2. 概率:实际生活中所遇到的事件包括必然事件、不可能事件和随机事件.随机事件在现实世界中是广泛存在的.在一次试验中,事件A是否发生虽然带有偶然性,但在大量重复试验下,它的发生呈现出一定的规律性,即事件A发生的频率 总是接近于某个常数,在它附近摆动,这个常数就叫做事件A的概率.记着P(A).
0≤P(A)≤1
3.若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件.
4.具有以下两个特点:(1)所有的基本事件只有有限个;(2)每个基本事件的发生都是等可能的.我们将满足上述条件的 随 机 试 验 的 概 率 模 型 称 为 古 典 概 型
5.等可能事件的概率:如果一次试验中共有n种等可能出现的结果,其中事件A包含的结果有m种,那么事件A的概率P(A)= .
二、疑难知识导析
1.必然事件、不可能事件、随机事件的区别与联系:必然事件是指在一定条件下必然发生的事件;不可能事件是指在一定的条件下不可能发生的事件;随机事件是指在一定的条件下可能发生也可能不发生的事件.要辨析清事件的条件和结果,理解事件的结果是相应于“一定条件”而言的,必须明确什么是事件发生的条件,什么是在此条件下产生的结果.上述三种事件都是在一定条件下的结果.
2.频率与概率:随机事件A的频率指此事件发生的次数m与试验总次数n的比值,它是随着试验次数的改变而变化的,它具有一定的稳定性,即总在某个常数p附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小,于是,我们给这个常数取个名字,叫随机事件的概率.因此,概率从数量上反映了随机事件发生的可能性的大小;而频率在大量重复试验的前提下,可近似地作为这个事件的概率.即概率是频率的稳定值,频率是概率的近似值.
3.必然事件的概率为1,不可能事件的概率为0,随机事件的概率:0<P(A)<1,这里要辩证地理解它们的概率:必然事件和不可能事件可以看作随机事件的两个极端,它们虽是两类不同的事件,但在一定的情况下又可以统一起来,即任意事件A的概率满足:
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源