《解二元一次方程组》教案3
- 资源简介:
约1450字。
解二元一次方程组(第二课时)
【教学目标】
1、学会用加减消元法解二元一次方程组。
2、使学生了解加减法是解方程组的一个基本方法
3、了解解二元一次方程组的消元思想,体会数学中“化未知为已知”的化归思想。
【教学重点、难点】
重点:用加减消元法解二元一次方程组。
难点:熟练掌握加减法的技巧。
【教学过程】
一、复习引入:
1、 解二元一次方程组的基本思想是什么?
答:基本思想是“消元”;
2、用代入法解下列方程组:
二、新课学习:
【比一比】:
通过刚才的练习,我们发现用代入法来解某些二元一次方程组比较简便,如练习(1),但在解另外一些二元一次方程组时,却显得比较繁琐,如练习(2),因此我们就提出了问题:解二元一次方程组的基本思想是“消元”,即把较复杂的“二元”方程转化为简单的“一元”方程,代入法是其中的一种消元方法,但它在解如练习(2)的方程组时显得比较繁,那么还有没有其他的消元方法,也可以变“二元”方程为“一元”方程呢?
【看一看】:
现在请同学们观察练习(2)这个方程组,找出各个未知数系数的关系?
(x的两个系数正好相等,y的两个系数是一对相反数)。
【析一析】:
我们知道相反数的和是0而两个相同数的差也是0,从中你能否得到一些启发?
【想一想】:
为什么可以将方程组中的两个方程左边和左边相加、右边和右边相加,所得的仍旧是一个方程(等式),如何解释?
(根据等式性质1)
根据上述分析,如果对于y,我们只要把两个方程相加,即可将之消去,而得到一个关于x的一元一次方程,解出后,将其代入一个较简单的方程,即可求出y,具体解法如下:
(1)+(2),得,6x=18,
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源