《函数的最大(小)值与导数》教案1
- 资源简介:
约1710字。
§1.3.3函数的最大(小)值与导数
教学目标:
⒈使学生理解函数的最大值和最小值的概念,掌握可导函数 在闭区间 上所有点(包括端点 )处的函数中的最大(或最小)值必有的充分条件;
⒉使学生掌握用导数求函数的极值及最值的方法和步骤
教学重点:利用导数求函数的最大值和最小值的方法.
教学难点:函数的最大值、最小值与函数的极大值和极小值的区别与联系.
教学过程:
一.创设情景
我们知道,极值反映的是函数在某一点附近的局部性质,而不是函数在整个定义域内的性质.也就是说,如果 是函数 的极大(小)值点,那么在点 附近找不到比 更大(小)的值.但是,在解决实际问题或研究函数的性质时,我们更关心函数在某个区间上,哪个至最大,哪个值最小.如果 是函数的最大(小)值,那么 不小(大)于函数 在相应区间上的所有函数值.
二.新课讲授
观察图中一个定义在闭区间 上的函数 的图象.图中 与 是极小值, 是极大值.函数 在 上的最大值是 ,最小值是 .
1.结论:一般地,在闭区间 上函数 的图像是一条连续不断的曲线,那么函数 在 上必有最大值与最小值.
说明:⑴如果在某一区间上函数 的图像是一条连续不断的曲线,则称函数 在这个区间上连续.(可以不给学生讲)
⑵给定函数的区间必须是闭区间,在开区间 内连续的函数 不一定有最大值与最小值.如函数 在 内连续,但没有最大值与最小值;
⑶在闭区间上的每一点必须连续,即函数图像没有间断,
⑷函数 在闭区间 上连续,是 在闭区间 上有最大值与最小值的充分条件而非必要条件.(可以不给学生讲)
2.“最值”与“极值”的区别和联系
⑴最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性.
⑵从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一;
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源