《椭圆及其标准方程》教案3
- 资源简介:
约2410字。
《椭圆及其标准方程》教案
撰写:刘一博 审核:胡海欧
三点剖析:
一、教学大纲及考试大纲要求:
1. 掌握二元一次不等式表示的平面区域
2. 理解线性规划的意义和线性约束条件,线性目标函数,可行解,可行域,最优解等基本概念
3. 掌握线性规划问题的图解法,并能应用线性规划的方法解决一些简单的实际问题.
二、重点与难点
1.重点是理解二元一次不等式表示的平面区域;
2.把实际问题转化为线性规划问题,并给出解答是教学难点
三、本节知识理解
本节主要学习内容是二元一次不等式(组)表示的平面区域以及线性规划的问题。
关于 表示的区域,常用特殊点带入检验,若 ,常把原点带入;若 ,则另选一些容易计算的特殊点带入检验。线性规划主要解决物资调运,劳力(或产品)安排,合理配方(或下料)等问题。主要步骤是(1)审题;(2)设相关元,列出目标函数和线性约束条件(不等式组);(3)作出可行域;(4)找最优解,确定目标函数的最值;(5)回答实际问题。
求线性规划的最优解,有时是整数解要根据实际问题取不足近似值或过剩近似值,一般方法有:(1)平移直线法,由网格观察最优解;(2)检验优值法,当可行域内整数点个数比较少时,可逐一带入检验;(3)调整优值法,先求非整点最优解及最优值,再借助不定方程的只是调整最优值,最后筛选最优解。
精题精讲
例1 写出适合下列条件的椭圆的标准方程:
⑴两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点P到两焦点的距离
之和等于10;
⑵两个焦点坐标分别是(0,-2)和(0,2)且过( , )
解:(1)因为椭圆的焦点在 轴上,所以设它的标准方程为
所以所求椭圆标准方程为
⑵ 因为椭圆的焦点在 轴上,所以设它的标准方程为
由椭圆的定义知,
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源