《椭圆简单的几何性质》教案1
- 资源简介:
约1950字。
《椭圆简单的几何性质》教案
◆ 知识与技能目标
了解用方程的方法研究图形的对称性;理解椭圆的范围、对称性及对称轴,对称中心、离心率、顶点的概念;掌握椭圆的标准方程、会用椭圆的定义解决实际问题;通过例题了解椭圆的第二定义,准线及焦半径的概念,利用信息技术初步了解椭圆的第二定义.
◆ 过程与方法目标
(1)复习与引入过程
引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对椭圆的标准方程的讨论,研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④通过P48的思考问题,探究椭圆的扁平程度量椭圆的离心率.〖板书〗§2.1.2椭圆的简单几何性质.
(2)新课讲授过程
(i)通过复习和预习,知道对椭圆的标准方程的讨论来研究椭圆的几何性质.
提问:研究曲线的几何特征有什么意义?从哪些方面来研究?
通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点及其他特征性质来研究曲线的几何性质.
(ii)椭圆的简单几何性质
①范围:由椭圆的标准方程可得, ,进一步得: ,同理可得: ,即椭圆位于直线 和 所围成的矩形框图里;
②对称性:由以 代 ,以 代 和 代 ,且以 代 这三个方面来研究椭圆的标准方程发生变化没有,从而得到椭圆是以 轴和 轴为对称轴,原点为对称中心;
③顶点:先给出圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点.因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较短的叫做短轴;
④离心率: 椭圆的焦距与长轴长的比 叫做椭圆的离心率( ), ;
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源