约3140字。
导数及其应用
【专题要点】
1. 导数的定义:利用导数的定义解题;
2. 求导数(包括求导函数和某一点的导数);
3. 导数的简单应用,包括求函数的极值,求函数的单调区间,证明函数的单调性等,复现率较高;
4. 导数在实际问题中的应用(利润最大,用料最省,效率最高等优化问题);
5. 综合考查,将导数内容和传统内容中有关不等式和函数的单调性、方程根的分布、解析几何中的切线问题等有机地结合在一起,设计综合问题。包括:
(1) 函数、导数、方程、不等式综合在一起,解决单调性、参数的范围等问题,这类问题涉及含参数的不等式、不等式的恒成立的求解;
(2) 函数、导数、方程、不等式综合在一起,解决极值、最值等问题,这类问题涉及求极值和极值点、求最值,有时需要借助方程的知识求解;
(3) 利用导数的几何意义求切线方程,解决与切线方程有关的问题;
(4) 通过构造函数,以导数为工具证明不等式;
(5) 导数与解析几何或函数图像的混合问题,这是一个重要问题,也是高考中考察综合能力的一个方向
【考纲要求】
⑴了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.
⑵熟记基本导数公式( ( 为有理数), 的导数).掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数.
⑶了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条件和充分条件(导数要极值点两侧异号),会求一些实际问题(一般指单峰函数)的最大值和最小值.
【知识纵横】
【教法指引】
(1)近几年各地高考题一直保持对导数知识考查力度,体现了在知识网络交汇点出题的命题风格,重点考查导数概念、单调性、极值等传统、常规问题,这三大块内容是本专题复习的主线,在复习中应以此为基础展开,利用问题链向学生展示题目间的内在联系,揭示解题的通法通解,如讲解利用导数处理函数单调性问题时,可设计这样的问题链:已知函数求单调区间 知函数在区间上单调求参数 若函数不单调如何求参数.
(2)要认识到新课程中增加了导数内容,增添了更多的变量数学,拓展了学习和研究的领域,在复习中要明确导数作为一种工具在研究函数的单调性、极值等方面的作用,这种作用不仅体现在导数为解决函数问题提供了有效途径,还在于它使学生掌握了一种科学的语言和工具,能够加深对函数的深刻理解和直观认识
(3)在教学中有意识的与解析几何(特别是切线、最值)、函数的单调性,函数的最值极值,二次函数,方程,不等式,代数不等式的证明等进行交汇,综合运用。特别是精选一些以导数为工具分析和解决一些函数问题、切线问题的典型问题,以及一些实际问题中的最大(小)值问题
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源