约1840字。
《解二元一次方程组》教案
教学内容分析:通过上节课的学习,学生已体验到解二元一次方程组的基本思路是消元,可以通过代入法来达到消元的目的,但也发现当方程组的两个方程中没有字母的系数为1(或-1)时,用一个未知数的代数或表示另一个未知数代入另一个数,计算比较麻烦,这样本节课的加减消元法可使消元的手段变得简单,本节课要使学生掌握用加减法解二元一次方程组。这样学生解二元一次方程组的技能已形成,为下面解应用题,为后来的解二元一次方程组打下基础。
教学目标:1、体会加减消元法形成的思路。
2、了解加减消元法解二元一次方程组一般步骤。
3、掌握用加减法解二元一次方程组。
4、初步形成用便捷的消元法(即加减法和代入法)来解题。
教学重点、难点:重点是了解加减法的一般步骤,会用加减法解二元一次方程。难点是如例4那样没有未知数的系数相同(或相反数),要通过将一个(或两个)方程乘以一个常数以达到未知数系数相同(或相反)。
教学准备:多媒体动画显示拿掉“正方形”和“圆柱体”天平仍平衡的过程(或投影片抽拉或实物演示)。
教学过程:
一、复习旧知 练习引入
1、你是如何用代入法解二元一次方程组的?
2x+3y=100 ①
2、解方程组
4x+3y=130 ②
投影显示学生的解题过程,对把(100-2x)作为3y整体代入的同学要及时表扬与激励。
二、直观显示 体验转化
1、同多媒体(投影片抽拉或实物)显示天平的一边拿掉2个小立方体和3个小圆柱,右边拿掉100克的砝码,天平仍显示平衡。
2、合作学习:如何使方程组 达到消元的目的。
3、让学生发表对解本题的体会(①方法的不同;②比较两种解法哪个更便捷)。
4、归纳:通过将方程组中的两个方程相加式相减,消去其中的一个未知数,转化为一元一次方程,这种解二元一次方程组的方法叫做加减消元法(简称加减法)。
三、学习新知 自主建构
2s+3t=2 ①
1、典例选讲例3,解方程组
2s-6t=-1 ②
先让学生观察讨论:如何使用加减法,然后学生发表意见,师在黑板上演算:
解:①-②得9t=3 ∴t=
把t= 代入①,(代入②可以吗?),得
∴
∴方程组的解是
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源