约6910字 第十三章 空间向量
1.理解空间向量的概念;掌握空间向量的加法、减法和数乘.
2.了解空间向量的基本定理;理解空间向量坐标的概念;掌握空间向量的坐标运算.
3.掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间的距离公式.
理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;掌握空间向量的数量积的坐标形式;能用向量的数量积判断向量的共线与垂直
第1课时 空间向量及其运算
空间向量是平面向量的推广.在空间,任意两个向量都可以通过平移转化为平面向量.因此,空间向量的加减、数乘向量运算也是平面向量对应运算的推广.
本节知识点是:
1.空间向量的概念,空间向量的加法、减法、数乘运算和数量积;
(1) 向量:具有 和 的量.
(2) 向量相等:方向 且长度 .
(3) 向量加法法则: .
(4) 向量减法法则: .
(5) 数乘向量法则: .
2.线性运算律
(1) 加法交换律:a+b= .
(2) 加法结合律:(a+b)+c= .
(3) 数乘分配律: (a+b)= .
3.共线向量
(1)共线向量:表示空间向量的有向线段所在的直线互相 或 .
(2) 共线向量定理:对空间任意两个向量a、b(b 0),a∥b等价于存在实数 ,使 .
(3) 直线的向量参数方程:设直线l过定点A且平行于非零向量a,则对于空间中任意一点O,点P在l上等价于存在 ,使 .
4.共面向量
(1) 共面向量:平行于 的向量.
(2) 共面向量定理:两个向量a、b不共线,则向量P与向量a、b共面的充要条件是存在实数对( ),使P .
共面向量定理的推论: .
5.空间向量基本定理
(1) 空间向量的基底: 的三个向量.
(2) 空间向量基本定理:如果a,b,c三个向量不共面,那么对空间中任意一个向量p,存在一个唯一的有序实数组 ,使 .
空间向量基本定理的推论:设O,A,B,C是不共面的的四点,则对空间中任意一点P,都存在唯一的有序实数组 ,使 .
6.空间向量的数量积
(1) 空间向量的夹角: .
(2) 空间向量的长度或模: .
(3) 空间向量的数量积:已知空间中任意两个向量a、b,则a•b= .
空间向量的数量积的常用结论:
(a) cos〈a、b〉= ;
(b) ïaï2= ;
(c) a b .
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源