《课题学习:最短路径问题》教学设计

  • 手机网页: 浏览手机版
  • 资源类别: 人教版 / 初中教案 / 八年级上册教案
  • 文件类型: doc
  • 资源大小: 138 KB
  • 资源评级:
  • 更新时间: 2017/9/13 7:17:19
  • 资源来源: 会员转发
  • 资源提供: renheren [资源集]
  • 下载情况: 本月:获取中 总计:获取中
  • 下载点数: 获取中 下载点  如何增加下载点
  •  点此下载传统下载

资源简介:

约2900字。

  课题学习:最短路径问题
  一、内容和内容解析
  1.内容
  利用轴对称研究某些最短路径问题.
  2.内容解析
  最短路径问题在现实生活中经常遇到,初中阶段主要以“两点之间,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”为基础知识,有时还要借助轴对称、平移、旋转等变换进行研究.【来源:21•世纪•教育•网】
  本节课以数学史中的一个经典问题——“将军饮马问题”为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题.
  基于以上分析,确定本节课的教学重点是:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题,培养学生解决实际问题的能力.21•世纪*教育网
  二、目标和目标解析
  1.教学目标
  能利用轴对称解决简单的最短路径问题,体会图形的变换在解决最值问题中的作用,感悟转化思想,进一步获得数学活动的经验,增强应用意识.
  2. 教学目标解析
  学生能将实际问题中的“地点”“河”抽象为数学中的“点”“线”,把实际问题抽象为数学问题;能利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题;能通过逻辑推理证明所求距离最短;在探索最短路径的过程中,体会轴对称的“桥梁”作用,感悟转化思想.2-1-c-n-j-y
  三、教学问题诊断分析
  最短路径问题从本质上说是极值问题,作为八年级的学生,在此之前很少接触,解决这方面问题的经验尚显不足,特别是面对具有实际背景的极值问题,更会感到陌生,无从下手.21*cnjy*com
  对于直线异侧的两点,怎样在直线上找到一点,使这一点到这两点的距离之和最小,学生很容易想到连接这两点,所连线段与直线的交点就是所求的点.但对于直线同侧的两点,如何在直线上找到一点,使这一点到这两点的距离之和最小,一些学生会感到茫然,找不到解决问题的思路.【出处:21教育名师】
  在证明“最短”时,需要在直线上任取一点(与所求作的点不重合),证明所连线段和大于所求作的线段和,学生想不到,不会用.【版权所有:21教育】

 点此下载传统下载搜索更多相关资源
  • 说明:“点此下载”为无刷新无重复下载提示方式;“传统下载”为打开新页面进行下载,有重复下载提示。
  • 提示:非零点资源点击后将会扣点,不确认下载请勿点击。
  • 我要评价有奖报错加入收藏下载帮助

下载说明:

  • 没有确认下载前请不要点击“点此下载”、“传统下载”,点击后将会启动下载程序并扣除相应点数。
  • 如果资源不能正常使用或下载请点击有奖报错,报错证实将补点并奖励!
  • 为确保所下资源能正常使用,请使用[WinRAR v3.8]或以上版本解压本站资源。
  • 站内部分资源并非原创,若无意中侵犯到您的权利,敬请来信联系我们。

资源评论

{$comment}