《课题学习:最短路径问题》教案1
- 资源简介:
约2780字。
13.4 课题学习 最短路径问题
教学目标
能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想.
教学重点
利用轴对称将最短路径问题转化为“两点之间,线段最短”问题.
教学难点
探索发现“最短路径”的方案,确定最短路径的作图及说理.
教学设计一师一优课 一课一名师 (设计者: )
教学过程设计
一、创设情景,明确目标
如图所示,从A地到B地有三条路可供选择,走哪条路最近?你的理由是什么?
前面我们研究过一些关于“两点的所有连线中,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题.现实生活中经常涉及到选择最短路径的问题,本节将利用数学知识探究数学史中著名的“将军饮马问题”.
二、自主学习,指向目标
自学教材第85 页至87 页,思考下列问题:
1.求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求,其依据是两点的所有连线中,线段最短.
2.求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.
3.在解决最短路径问题时,我们通常利用轴对称、平移等变化把已知问题转化为容易解决的问题,从而作出最短路径的选择.
三、合作探究,达成目标
探究点一 探索最短路径问题
活动一:相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:
从图中的A地出发,到一条笔直的河边l 饮马,然后到B地.到河边什么地方饮马可使他所走的路线全程最短?
精通数学、物理学的海伦稍加思索,利用轴对称的 知识回答了这个问题.这个问题后来被称为“将军饮马问题”.你能将这个问题抽象为数学问题吗?
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源