《直线与平面垂直的判定》教学设计5
- 资源简介:
约3890字。
《2.3直线与平面垂直的判定》教学设计
班级:高一(16)班 授课人:党亚妮
一、教学内容和内容解析
《直线与平面垂直的判定》是高中新教材人教A版必修2第2章2.3.1的内容,本节课主要学习线面垂直的定义、判定定理及定理的初步运用。其中,线面垂直的定义是线面垂直最基本的判定方法和性质,它是探究线面垂直判定定理的基础;线面垂直的判定定理充分体现了线线垂直与线面垂直之间的转化,它既是后面学习面面垂直的基础,又是连接线线垂直和面面垂直的纽带!学好这部分内容,对于学生建立空间观念,实现从认识平面图形到认识立体图形的飞跃,是非常重要的。
直线与平面垂直的判定定理本节是通过折纸试验来感悟的,它把原来定义中要求与任意一条(无限)垂直转化为只要与两条(有限)相交直线垂直就行了,概言之,线不在多,相交就行。直线与平面垂直的判定方法除了定义法、判定定理外,还有如果两条平行直线中的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面,这是直线与平面垂直判定的一种间接方法,也是十分重要的。
二、教学重点、难点,以及期望目标和目标解析
根据《课程标准》,线面垂直判定定理的严格证明在本节课中不做要求,这样降低了难度。
教学重点:操作确认并概括出直线与平面垂直的定义和判定定理。
教学难点:操作确认并概括出直线与平面垂直的判定定理及初步运用。
期望目标:理解直线与平面垂直的定义,掌握直线与平面垂直的判定定理.
目标解析: 1.利用已有知识与生活经验,抽象概括出直线与平面垂直的定义;
2.通过概括、辨析与应用,正确理解直线与平面垂直的定义;
3.通过直观感知、操作确认,归纳出直线与平面垂直的判定定理;
4.运用直线与平面垂直的判定定理,证明和直线与平面垂直有关的简单命题.
5.在探索直线与平面垂直判定定理的过程中发展合情推理能力,同时感悟和体验“空间问题转化为平面问题”、“线面垂直转化为线线垂直”、“无限转化为有限”等数学思想.
三、教学问题诊断分析
学生已有的认知基础是熟悉的日常生活中的具体直线与平面垂直的直观形象(学生的客观现实)和直线与直线垂直的定义、直线与平面平行的判定定理等数学知识结构(学生的数学现实),这为学生学习直线与平面垂直定义和判定定理等新知识奠定基础。学生学习的困难在于如何从直线与平面垂直的直观形象中提炼出直线与平面垂直的定义,感悟直线与平面垂直的意义;以及如何从折纸试验中探究出直线与平面垂直的判定定理。
四、学习行为分析
本节课安排在立体几何的初始阶段,是学生空间观念形成的关键时期,课堂上学生通过感知、观察、提炼直线与平面垂直的定义,进而通过辨析讨论,深化对定义的理解。进一步,在一个具体的数学问题情境中猜想直线与平面垂直的定义及判定定理,并在教师的指导下,通过动手操作、观察分析、自主探索等活动,切身感受直线与平面垂直及定义判定定理的形成过程,体会蕴涵在其中的思想方法。继而,通过课本例1的学习概括直线与平面垂直的几种常用判定方法。再通过练习与课后小结,使学生进一步加深对直线与平面垂直的判定定理的理解。
五、教学支持条件分析
为了有效实现教学目标,教师准备:多媒体课件(以PowerPoint为平台)、三角板、大三角形纸片等教具;学生自备:三角形纸片(任意形状)、笔(表直线)、课本(表平面)等学具。
六、教学过程设计
(一)直观感知直线与平面垂直的位置关系
复习:直线和平面的位置关系是什么?
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源