学案《特殊三角形期末综合复习》
- 资源简介:
约4740字。
学 案 特殊三角形中考综合复习
学科 数学 年级 九年级 班级 3 班 教师 李建松
课题 特殊三角形中考综合复习 上课时间 2016.4.4
学习
目标 熟练运用特殊三角形的性质解决问题
学习
重点 特殊三角形的性质的综合运用
学习
难点 特殊三角形特殊性质的综合运用
教 学 流 程
第一部分:国学课堂
大获全胜的真相
古代的一位将军将要率军出征,与实力比他强十倍的敌军交战。在前进的途中,他下马在路旁的一座小庙里祈祷。祷告后,他面对众人,拿出一枚钱币,说: “现在我来掷钱问卜,如果钱币的正面朝上,那我们将大获全胜;如果正面朝下,就表示我们将会一败涂地。”
钱币掉在地上,是正面朝上,于是全军士气大振,士兵个个奋勇向前。次日大战,果然将敌军打得落花流水,落荒而逃。
凯旋班师的途中,一位部将对将军说:“神的旨意,谁也不能改变。”将军笑笑,又拿出了那枚钱币,原来,钱币的两面都是正面。做什么不重要,用什么做才重要,用心中的信仰去做最重要!有信仰的人千方百计,没信仰的人千难万难!当你下定决心一定要成功的时候,就会激发出你体内的潜能,创造出生命的奇迹。
第二部分:感受中考(带有*的为选做题)
一.选择题(共7小题)
1.(2016•贵阳模拟)如图,每个小正方形的边长都相等,A、B、C是小正方形的顶点,则∠ABC的度数为( )
A.30° B.45° C.60° D.90°
2.(2015•苏州)如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为( )
A.35° B.45° C.55° D.60°
3.(2015•南宁)如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为( )
A.35° B.40° C.45° D.50°
4.(2015•淄博)如图,在Rt△ABC中,∠BAC=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.已知DC=5,AD=2,则图中长为 的线段有( )
A.4条 B.3条 C.2条 D.1条
第1题 第2题 第3题 第4题
5.(2015•毕节市)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )
A. , , B.1, , C.6,7,8 D.2,3,4
6.(2015•大连)如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD= ,则BC的长为( )
A. ﹣1 B. +1 C. ﹣1 D. +1
7.(2015•天水)如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=2 ,CD= ,点P在四边形ABCD的边上.若点P到BD的距离为 ,则点P的个数为( )
A.2 B.3 C.4 D.5
二.填空题(共10小题)
8.(2015•广元)一个等腰三角形的两边长分别是2cm、5cm,则它的周长为 cm.
9.(2015•西宁)等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是 .
10.(2015•南通)如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC= 度.
11.(2014•珠海)如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…则OA6的长度为 .
第6题 第7题 第10题 第11题
12.(2015•枣庄)如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于 .
13.(2015•河北)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:
以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;
再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;
再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…
这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n= .
14.(2013•漳州)如图,正方形ODBC中,OC=1,OA=OB,则数轴上点A表示的数是 .
第12题 第13题 第14题
15.(2013•莆田)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是 .
16.(2015•通辽)如图,在一张长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为 .
17.(2015•株洲)如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,EF=2,那么AH等于 .
第15题 第16题 第17题
三.解答题(共5小题)
18.(2015•北京)如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.
19.(2015•宿迁)如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.
20.(2015秋•龙岩期中)如图,在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点.
(1)写出点O到△ABC的三个顶点A、B、C的距离的关系(不要求证明)
(2)如果点M、N分别在线段AB、AC上移动,在移动过程中保持AN=BM,请判断△OMN的形状,请证明你的结论.
21.(2013•威海)操作发现
将一副直角三角板如图①摆放,能够发现等腰直角三角板ABC的斜边与含30°角的直角三角板DEF的长直角边DE重合.
问题解决
将图①中的等腰直角三角板ABC绕点B顺时针旋转30°,点C落在BF上,AC与BD交于点O,连接CD,如图②.
(1)求证:△CDO是等腰三角形;
(2)若DF=8,求AD的长.
课后作业:
1、 复习本节所讲知识点和重点试题;
2、 完成课后练习题
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源