2017版数学(文)大一轮复习:空间图形的基本关系与公理
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
约6760字。
1.四个公理
公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内).
公理2:经过不在同一条直线上的三点,有且只有一个平面(即可以确定一个平面).
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.
公理4:平行于同一条直线的两条直线平行.
2.直线与直线的位置关系
(1)位置关系的分类
共面直线平行直线相交直线异面直线:不同在任何一个平面内,没有公共点
(2)异面直线所成的角
①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).
②范围:0,π2.
3.直线与平面的位置关系有平行、相交、在平面内三种情况.
4.平面与平面的位置关系有平行、相交两种情况.
5.等角定理
空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补.
【思考辨析】
判断下面结论是否正确(请在括号中打“√”或“×”)
(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.( √ )
(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.( × )
(3)两个平面α,β有一个公共点A,就说α,β相交于A点,并记作α∩β=A.( × )
(4)两个平面ABC与DBC相交于线段BC.( × )
(5)经过两条相交直线,有且只有一个平面.( √ )
(6)没有公共点的两条直线是异面直线.( × )
1.下列命题正确的个数为( )
①梯形可以确定一个平面;
②若两条直线和第三条直线所成的角相等,则这两条直线平行;
③两两相交的三条直线最多可以确定三个平面;
④如果两个平面有三个公共点,则这两个平面重合.
A.0 B.1 C.2 D.3
答案 C
解析 ②中两直线可以平行、相交或异面,④中若三个点在同一条直线上,则两个平面相交,①③正确.
2.已知a,b是异面直线,直线c平行于直线a,那么c与b( )
A.一定是异面直线 B.一定是相交直线
C.不可能是平行直线 D.不可能是相交直线
答案 C
解析 由已知得直线c与b可能为异面直线也可能为相交直线,但不可能为平行直线,若b∥c,则a∥b,与已知a、b为异面直线相矛盾.
3.在如图所示的几何体中,AA′∥BB′∥CC′,则由A、B、C、A′、B′、C′六点可确定的平面个数为( )
A.5 B.8
C.11 D.12
答案 C
4.如图,正方体ABCD—A1B1C1D1中,PQ是异面直线A1D与AC的公垂线,则直线PQ与BD1的位置关系为( )
A.平行
B.异面
C.相交但不垂直
D.垂直
答案 A
解析 ∵A1D∥B1C,PQ⊥A1D,∴PQ⊥B1C.又∵PQ⊥AC,∴PQ⊥平面AB1C.∵AC⊥BD,AC⊥DD1,∴AC⊥BD1,同理B1C⊥BD1,∴BD1⊥平面AB1C,∴PQ∥BD1.
5.如图所示,已知在长方体ABCD-EFGH中,AB=23,AD=23,AE=2,则BC和EG所成角的大小是______,AE和BG所成角的大小是________.
答案 45° 60°
解析 ∵BC与EG所成的角等于EG与FG所成的角即∠EGF,tan∠EGF=EFFG=2323=1,∴∠EGF=45°,
∵AE与BG所成的角等于BF与BG所成的角即∠GBF,tan∠GBF=GFBF=232=3,∴∠GBF=60°.
题型一 平面基本性质的应用
例1 如图所示,正方体ABCD—A1B1C1D1中,E、F分别是AB和AA1的中点.求证:
(1)E、C、D1、F四点共面;
(2)CE、D1F、DA三线共点.
证明 (1)如图,连接EF,CD1,A1B.
∵E、F分别是AB、AA1的中点,∴EF∥BA1.
又A1B∥D1C,∴EF∥CD1,
∴E、C、D1、F四点共面.
(2)∵EF∥CD1,EF<CD1,
∴CE与D1F必相交,
设交点为P,如图所示.
则由P∈CE,CE平面ABCD,得P∈平面ABCD.
同理P∈平面ADD1A1.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源