天津市第一中学2015-2016学年高二数学(理)必修2期中复习练习卷
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
约1560字。
必修二 期中复习
一、立体几何 (A)
1.如图所示,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.
(1)证明:CD⊥平面PAE;
(2)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.
(1)如图所示,连接AC,由AB=4,BC=3,∠ABC=90°,得AC=5.
又AD=5,E是CD的中点,所以CD⊥AE.
∵PA⊥平面ABCD,CD⊂平面ABCD,所以PA⊥CD.
而PA,AE是平面PAE内的两条相交直线,所以CD⊥平面PAE.
(2)过点B作BG∥CD,分别与AE,AD相交于F,G,连接PF.
由(1)CD⊥平面PAE知,BG⊥平面PAE.于是∠BPF为直线PB与平面PAE所成的角,且BG⊥AE.
由PA⊥平面ABCD知,∠PBA为直线PB与平面ABCD所成的角.
AB=4,AG=2,BG⊥AF,由题意,知∠PBA=∠BPF,
因为sin∠PBA=PAPB,sin∠BPF=BFPB,所以PA=BF.
由∠DAB=∠ABC=90°知,AD∥BC,又BG∥CD,所以四边形BCDG是平行四边形,故GD=BC=3.于是AG=2.
在Rt△BAG中,AB=4,AG=2,BG⊥AF,所以
BG=AB2+AG2=25,BF=AB2BG=1625=855.于是PA=BF=855.
又梯形ABCD的面积为S=12×(5+3)×4=16,所以四棱锥P-ABCD的体积为
V=13×S×PA=13×16×855=128515.
2.如图,四棱锥 中, 与 都是等边三角形.
(I)证明: (II)求二面角 的平面角的余弦值.
3.如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M为BC的中点.
(1)证明:AM⊥PM;
(2)求二面角P-AM-D的大小.
[解析] (1)证明:如图所示,取CD的中点E,连接PE,EM,EA,
∵△PCD为正三角形,
∴PE⊥CD,PE=PDsin∠PDE=2sin60°=3.
∵平面PCD⊥平面ABCD,
∴PE⊥平面ABCD,而AM⊂平面ABCD,∴PE⊥AM.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源