2016高考数学(理科)专题演练:推理证明、算法、复数(含两年高考一年模拟)
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
约9120字。
第十章 推理证明、算法、复数
考点35 推理与证明、数学归纳法
两年高考真题演练
1.(2014•山东)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是( )
A.方程x3+ax+b=0没有实根
B.方程x3+ax+b=0至多有一个实根
C.方程x3+ax+b=0至多有两个实根
D.方程x3+ax+b=0恰好有两个实根
2.(2015•山东)观察下列各式:
C01=40;
C03+C13=41;
C05+C15+C25=42;
C07+C17+C27+C37=43;
……
照此规律,当n∈N*时,C02n-1 +C12n-1+ C22n-1+…+ Cn-12n-1=________.
3.(2015•福建)一个二元码是由0和1组成的数字串x1x2…xn(n∈N*),其中xk(k=1,2,…,n)称为第k位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).
已知某种二元码x1x2…x7的码元满足如下校验方程组:
x4⊕x5⊕x6⊕x7=0,x2⊕x3⊕x6⊕x7=0,x1⊕x3⊕x5⊕x7=0,
其中运算⊕定义为0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.
现已知一个这种二元码在通信过程中仅在第k位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k等于________.
4.(2014•
安徽)如图,在等腰直角三角形ABC中,斜边BC=22,过点A作BC的垂线,垂足为A1;过点A1作AC的垂线,垂足为A2;过点A2作A1C的垂线,垂足为A3;…,依此类推,设BA=a1,AA1=a2,A1A2=a3,…,A5A6=a7,则a7=________.
5.(2014•福建)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:
①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是________.
6.(2014•陕西)观察分析下表中的数据:
多面体 面数(F) 顶点数(V) 棱数(E)
三棱柱 5 6 9
五棱锥 6 6 10
立方体 6 8 12
猜想一般凸多面体中F,V,E所满足的等式是________.
7.(2014•重庆)设a1=1,an+1=a2n-2an+2+b(n∈N*).
(1)若b=1,求a2,a3及数列{an}的通项公式;
(2)若b=-1,问:是否存在实数c使得a2n<c<a2n+1对所有n∈N*成立?证明你的结论.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源