吉林省东北师范大学附属中学2015-2016学年人教数学理科必修一【教案】第1章第2节+函数及其表示(6份)
1.2~10函数的表示法(1).docx
1.2~11函数的表示法(2).docx
1.2~12函数的表示法(3).docx
1.2~13函数及其表示复习课.docx
1.2~8函数的概念(1).docx
1.2~9函数的概念(2).docx
~$2~13函数及其表示复习课.docx
课题:函数的概念(1)
课时:008
课 型:新授课
教学目标:
(1)通过丰富实例,学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;
(2)了解构成函数的三要素;
(3)能够正确使用“区间”的符号表示某些集合。
教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数。
教学难点:理解函数的模型化思想,用集合与对应的语言来刻画函数。
教学过程:
一、复习准备:
1. 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?
2.回顾初中函数的定义:
在一个变化过程中,有两个变量x和y,对于x的每一个确定的值,y都有唯一的值与之对应,此时y是x的函数,x是自变量,y是因变量。
表示方法有:解析法、列表法、图象法.
二、讲授新课:
(一)函数的概念:
思考1:(课本P15)给出三个实例:
A.一枚炮弹发射,经26秒后落地击中目标,射高为845米,且炮弹距地面高度h(米)与时间t(秒)的变化规律是 。
B.近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况。(见课本P15图)
C.国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的高低。“八五”计划以来我们城镇居民的恩格尔系数如下表。(见课本P16表)
讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着怎样的对应关系? 三个实例有什么共同点?
归纳:三个实例变量之间的关系都可以描述为:对于数集A中的每一个x,课题:函数的表示法(1)
课时:010
课 型:新授课
教学目标:
(1)掌握函数的三种表示方法(解析法、列表法、图像法),了解三种表示方法各自的优点;
(2)在实际情境中,会根据不同的需要选择恰当的方法表示函数;
(3)通过具体实例,了解简单的分段函数,并能简单应用。
教学重点:会根据不同的需要选择恰当的方法表示函数。
教学难点:分段函数的表示及其图象。
教学过程:
一、复习准备:
1.提问:函数的概念?函数的三要素?
2.讨论:初中所学习的函数三种表示方法?试举出日常生活中的例子说明.
二、讲授新课:
(一)函数的三种表示方法:
结合课本P15 给出的三个实例,说明三种表示方法的适用范围及其优点:
解析法:就是用数学表达式表示两个变量之间的对应关系,如1.2.1的实例(1);
优点:简明扼要;给自变量求函数值。
图象法:就是用图象表示两个变量之间的对应关系,如1.2.1的实例(2);
优点:直观形象,反映两个变量的变化趋势。
课题:函数及其表示复习课
课时:013
课 型:复习课
教学目标:
(1)会求一些简单函数的定义域和值域;
(2)掌握分段函数、区间、函数的三种表示法;
(3)会解决一些函数记号的问题.
教学重点:求定义域与值域,解决函数简单应用问题。
教学难点:对函数记号的理解。
教学过程:
一、基础习题练习:(口答下列基础题的主要解答过程 → 指出题型解答方法)
1.说出下列函数的定义域与值域: ; ; ;
2.已知 ,求 , , ;
3.已知 ,
(1)作出 的图象;
(2)求 的值
二、讲授典型例题:
例1.已知函数 =4x+3,g(x)=x , 求f[f(x)],f[g(x)],g[f(x)],g[g(x)].
例2.求下列函数的定义域:
(1) ; (2) ;
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源