《数列》全章教案
- 资源简介:
约15710字。
第一章 数列
一、课程要求
数列作为一种特殊的函数,是反映自然规律的基本模型。在本模块中,学生将通过对日常中大量实际问题的分析,建立等差数列和等比数列这两种模型,探索并掌握它们的一些基本数量关系,感受这两种数列模型的广泛应用,并利用它们解决一些实际问题。
1、了解数列的概念,概念
2、理解等差数列的概念,探索并掌握等差数列的通项公式,体会等差数列的通项公式与一次函数之间的关系。
3、探索并掌握等差数列的前n项和公式,体会等差数列的前n项和公式与二次函数之间的关系。
4、理解等比数列的概念,探索并掌握等比数列的通项公式,体会等比数列的通项公式与指数函数之间的关系。
5、探索并掌握等比数列的前n项和公式,体会等比数列的前n项和公式与指数型函数之间的关系。
6、能在具体的问题情境中,发现数列的等差或等比关系,并能用有关知识解决相应问题。
二、编写意图:
1、 数列是刻画离散过程的重要数学模型,数列的知识也是高等数学的基础,它可以看成是定义在正整数集或其有限子集的函数,因此,从函数的角度来研究数列,即是对函数学习的延伸,也是一种特殊的函数模型。
2、 本章力求通过具体的问题情景展现,帮助学生了解数列的概念,通过对具体问题的探究,理解与掌握两类特殊的数列,并应用它们解决实际生活中相关的一些问题。编写中体现了数学来源于生活,又服务于生活的这种基础学科的特点,使学生感觉到又亲切又好奇,充满魅力。
3、 教材在例题、习题的编排上,注重让学生重点掌握数列的概念、特殊数列的通项公式、求和公式等,并应用这些知识解决实际生活中的问题,渗透函数思想解决问题。
4、 教材在内容设计上突出了一些重要的数学思想方法。如类比思想、归纳思想、数形结合思想、算法思想、方程思想、特殊到一般等思想贯穿于全章内容的始终。
5、 教材在知识内容设计上,注意了数列与函数、算法、微积分、方程等的联系,适度应用现代信息计术,帮助学生理解数学,提高数学学习的兴趣。
三、教学内容及课时安排建议。本章教学时间约13课时。
§1数列 1.1数列的概念 约1课时
1.2数列的函数特性 约1课时
§2等差数列 2.1等差数列 约2课时
2.2等差数列的前n项和 约2课时
§3等比数列 3.1等比数列 约2课时
3.2等比数列的前n项和 约2课时
§4数列在日常经济生活中的应用 约1课时
问题与小结 约2课时
评价建议:
1、 重视对学生数学学习过程的评价。关注学生在数列知识学习过程中,是否对所呈现的现实问题情境充满兴趣;在学习过程中,能否发现数列的等差关系或等比关系,体会等差数列、等比数列与一次函数、指数函数的关系。
正确评价学生的数学基础知识和基础技能。关注学生在数列知识的学习过程中,能否类比函数的性质,正确理解数列的概念,发现数列的等差关系或等比关系,正确运用等差数列、等比数列的通项公式和求和公式解决具体问题。
1.1 数列的概念
教学目标
1、知识与技能:了解数列的概念和几种简单的表示方法(列表、图象、通项公式);
了解数列是一种特殊的函数;
2、过程与方法:通过三角形数与正方形数引入数列的概念;通过类比函数的思想了解数列的几种简单的表示方法(列表、图象、通项公式);
3、情态与价值:体会数列是一种特殊的函数;借助函数的背景和研究方法来研究有关数列的问题,可以进一步让学生体会数学知识间的联系,培养用已知去研究未知的能力。
教学重点:理解数列的概念,认识数列是反映自然规律的基本数学模型,探索并掌握数列的几种间单的表示法(列表、图象、通项公式);
难点:了解数列是一种特殊的函数;发现数列规律找出可能的通项公式。
教学方法:讲授法为主
教学过程:一.揭示课题:今天开始我们研究一个新课题.
先举一个生活中的例子:场地上堆放了一些圆钢,最底下的一层有100根,在其上一层(称作第二层)码放了99根,第三层码放了98根,依此类推,问:最多可放多少层?第57层有多少根?从第1层到第57层一共有多少根?我们不能满足于一层层的去数,而是要但求如何去研究,找出一般规律.实际上我们要研究的是这样的一列数
象这样排好队的数就是我们的研究对象——数列.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源