《概率的基本性质》学案
- 资源简介:
约3040字。
3.1.3概率的基本性质
课前预习学案
一、预习目标:
通过预习事件的关系与运算,初步理解事件的包含,并,交, 相等事件, 以及互斥事件, 对立事件的概念。
二、预习内容:
1、知识回顾:
(1)必然事件:在条件S下, 发生的事件,叫相对于条件S的必然事件;
(2)不可能事件:在条件S下, 发生的事件,叫相对于条件S的不可能事件;
(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;
(4)随机事件:在条件S下 的事件,叫相对于条件S的随机事件;
2、事件的关系与运算
①对于事件A与事件B, 如果事件A发生,事件B一定发生, 就称事件 包含事件 .
(或称事件 包含于事件 ).记作A B, 或B A. 如上面试验中 与
②如果B A 且A B, 称事件A与事件B相等.记作A B. 如上面试验中 与
③如果事件发生当且仅当事件A发生或事件B发生. 则称此事件为事件A与事件B的并.
(或称和事件), 记作A B(或A B). 如上面试验中 与
④如果事件发生当且仅当事件A发生且事件B发生. 则称此事件为事件A与事件B的交.
(或称积事件), 记作A B(或A B). 如上面试验中 与
⑤如果A B为不可能事件(A B ), 那么称事件A与事件B互斥.
其含意是: 事件A与事件B在任何一次实验中 同时发生.
⑥如果A B为不可能事件,且A B为必然事件,称事件A与事件B互为对立事件.
其含意是: 事件A与事件B在任何一次实验中 发生.
3. 概率的几个基本性质
(1).由于事件的频数总是小于或等于试验的次数. 所以, 频率在0~1之间, 从而任何事件的概率
在0~1之间.即
①必然事件的概率: ; ; ②不可能事件的概率: .
(2) 当事件A与事件B互斥时, A B发生的频数等于A发生的频数与B发生的频数之和.
从而A B的频率 . 由此得
概率的加法公式:
(3).如果事件A与事件B互为对立, 那么, A B为必然事件, 即 .
因而
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源