《古典概型》教案4
- 资源简介:
约2860字。
3.2.1古典概型
【教学目标】
1.能说出古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;
2.会应用古典概型的概率计算公式:P(A)=
3.会叙述求古典概型的步骤;
【教学重难点】
教学重点:正确理解掌握古典概型及其概率公式
教学难点:会用列举法计算一些随机事件所含的基本事件数及事件发生的概率
【教学过程】
前置测评
1.两个事件之间的关系包括包含事件、相等事件、互斥事件、对立事件,事件之间
的运算包括和事件、积事件,这些概念的含义分别如何?
若事件A发生时事件B一定发生,则 .
若事件A发生时事件B一定发生,反之亦然,则A=B.若事件A与事件B不同时发
生,则A与B互斥.若事件A与事件B有且只有一个发生,则A与B相互对立.
2。概率的加法公式是什么?对立事件的概率有什么关系?
若事件A与事件B互斥,则 P(A+B)=P(A)+P(B).
若事件A与事件B相互对立,则 P(A)+P(B)=1.
3.通过试验和观察的方法,可以得到一些事件的概率估计,但这种方法耗时多,操作不方便,并且有些事件是难以组织试验的.因此,我们希望在某些特殊条件下,有一个计算事件概率的通用方法.
新知探究
我们再来分析事件的构成,考察两个试验:
(1)掷一枚质地均匀的硬币的试验。
(2)掷一枚质地均匀的骰子的试验。
有哪几种可能结果?
在试验(1)中结果只有两个,即“正面朝上”或“反面朝上”它们都是随机的;在试验(2)中所有可能的试验结果只有6个,即出现“1点”“2点”“3点”“4点”“5点”“6点”它们也都是随机事件。我们把这类随机事件称为基本事件
综上分析,基本事件有哪两个特征?
(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和.
例1:从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?
分析:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果都列出来。
解:所求的基本事件有6个:A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d};A+B+C.
上述试验和例1的共同特点是:
(1)试验中有可能出现的基本事件只有有限个;
(2)每个基本事件出现的可能性相等,
这有我们将具有这两个特点的概率模型称为古典概率模型
思考1:抛掷一枚质地均匀的骰子有哪些基本事件?每个基本事件出现的可能性相等吗?
思考2:抛掷一枚质地不均匀的硬币有哪些基本事件?每个基本事件出现的可能性相等吗?
思考3:从所有整数中任取一个数的试验中,其基本事件有多少个?无数个
思考4:随机抛掷一枚质地均匀的骰子,利用基本事件的概率值和概率加法公式,“出现偶数点”的概率如何计算?“出现不小于2点” 的概率如何计算?
思考5:考察抛掷一枚质地均匀的骰子的基本事件总数,与“出现偶数点”、“出现不小于2点”所包含的基本事件的个数之间的关系,你有什么发现?
P(“出现偶数点”)=“出现偶数点”所包含的基本事件的个数÷基本事件的总数;
P(“出现不小于2点”)=“出现不小于2点”所包含的基本事件的个数÷基本事件的总数.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源