《平面向量数量积的坐标表示、模、夹角》学案
- 资源简介:
约1100字。
2.4.2平面向量数量积的坐标表示、模、夹角
课前预习学案
一、预习目标:
预习平面向量数量积的坐标表达式,会进行数量积的运算。了解向量的模、夹角等公式。
二、预习内容:
1.平面向量数量积(内积)的坐标表示
2.引入向量的数量积的坐标表示,我们得到下面一些重要结论:
(1)向量模的坐标表示:
能表示单位向量的模吗?
(2)平面上两点间的距离公式:
向量a的起点和终点坐标分别为A(x1,y1),B(x2,y2)
AB=
(3)两向量的夹角公式cos =
3. 向量垂直的判定(坐标表示)
4.向量平行的判定(坐标表示)
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习目标
学会用平面向量数量积的坐标表达式,会进行数量积的运算。掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题.
学习重难点:平面向量数量积及运算规律.平面向量数量积的应用
二、学习过程
(一)创设问题情景,引出新课
a与b的数量积 的定义?⑵向量的运算有几种?应怎样计算?
(二)合作探究,精讲点拨
探究一:已知两个非零向量a=(x1,x2),b=(x2,y2),怎样用a与b的坐标表示数量积a•b呢?
a•b=(x1,y1)•(x2,y2)=(x1i+y1j)•(x2i+y2j)=x1x2i2+x1y2i•j+x2y1i•j+y1y2j2=x1x2+y1y2
教师:巡视辅导学生,解决遇到的困难,估计学生对正交单位基向量i,j的运算可能有困难,点拨学生:i2=1,j2=1,i•j=0
探究二:探索发现向量的模的坐标表达式
若a=(x,y),如何计算向量的模|a|呢?
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源