《平面向量数量积的坐标表示、模、夹角》教案
- 资源简介:
约1360字。
三、平面向量数量积的坐标表示、模、夹角
教学目的:
⑴要求学生掌握平面向量数量积的坐标表示
⑵掌握向量垂直的坐标表示的充要条件,及平面内两点间的距离公式.
⑶能用所学知识解决有关综合问题.
教学重点:平面向量数量积的坐标表示
教学难点:平面向量数量积的坐标表示的综合运用
授课类型:新授课
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.两个非零向量夹角的概念
已知非零向量a与b,作 =a, =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.
2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cos叫a与b的数量积,记作ab,即有ab = |a||b|cos,
(0≤θ≤π).并规定0与任何向量的数量积为0.
3.向量的数量积的几何意义:
数量积ab等于a的长度与b在a方向上投影|b|cos的乘积.
4.两个向量的数量积的性质:
设a、b为两个非零向量,e是与b同向的单位向量.
1 ea = ae =|a|cos; 2 ab ab = 0
3 当a与b同向时,ab = |a||b|;当a与b反向时,ab = |a||b|. 特别的aa = |a|2或
4 cos = ;5|ab| ≤ |a||b|
5.平面向量数量积的运算律
交换律:a b = b a
数乘结合律:( a)b = (ab) = a( b)
分配律:(a + b)c = ac + bc
二、讲解新课:
⒈ 平面两向量数量积的坐标表示
已知两个非零向量 , ,试用 和 的坐标表示 .
设 是 轴上的单位向量, 是 轴上的单位向量,那么 ,
所以
又 , , ,所以
这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即
2. 平面内两点间的距离公式
一、 设 ,则 或 .
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源