《弧度制》学案
- 资源简介:
约1440字。
1.1.2 弧度制
课前预习学案
一、预习目标:
1.了解弧度制的表示方法;
2.知道弧长公式和扇形面积公式.
二、预习内容
初中学习中我们知道角的度量单位是度、分、秒,它们是60进制,角是否可以用其它单位度量,是否可以采用10进制?
自学课本第7、8页.通过自学回答以下问题:
1、 角的弧度制是如何引入的?
2、 为什么要引入弧度制?好处是什么?
3、 弧度是如何定义的?
4、 角度制与弧度制的区别与联系?
三、提出疑惑
1、平角、周角的弧度数?
2、角的弧度制与角的大小有关,与角所在圆的半径的大小是否有关?
3、角的弧度与角所在圆的半径、角所对的弧长有何关系?
课内探究学案
一、学习目标
1.理解弧度制的意义;
2.能正确的应用弧度与角度之间的换算;
3.记住公式 ( 为以. 作为圆心角时所对圆弧的长, 为圆半径);
4.熟练掌握弧度制下的弧长公式、扇形面积公式及其应用。
二、重点、难点
弧度与角度之间的换算;
弧长公式、扇形面积公式的应用。
三、学习过程
(一)复习:初中时所学的角度制,是怎么规定 角的?角度制的单位有哪些,是多少进制的?
(二)为了使用方便,我们经常会用到一种十进制的度量角的单位制——弧度制。
<我们规定> 叫做1弧度的角,用符号 表示,读作 。
练习:圆的半径为 ,圆弧长为 、 、 的弧所对的圆心角分别为多少?
<思考>:圆心角的弧度数与半径的大小有关吗?
由上可知:如果半径为r的园的圆心角 所对的弧长为 ,那么,角 的弧度数的绝对值是:
, 的正负由 决定。
正角的弧度数是一个 ,负角的弧度数是一个 ,零角的弧度数是 。
<说明>:我们用弧度制表示角的时候,“弧度”或 经常省略,即只写一实数表示角的度量。
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源