《函数与方程》说课稿
- 资源简介:
约2090字。
函数与方程第一课时
——方程的根与函数的零点说课稿
郑传生
教材分析:
函数作为高中的重点知识有着广泛的应用,与其他数学内容有着有机联系。课本选取探究具体的一元二次方程的根与其对应的二次函数的图像与横轴的交点的关系作为本节内容的入口,其意图是让学生从熟悉的环境中发现新知识,使新知识与原有知识形成联系。本节设计特点由特殊到一般,由易到难,这符合学生的认知规律。课堂体现的数学思想是“数形结合”和“转化”思想。充分体现了函数图像和性质的应用。因此把握课本要从三方面入手:新旧知识的联系,学生认知规律,数学思想和方法。
学情分析:
1、现有知识储备:(1)常用函数的图像和性质(2)常见方程的解法;(3)函数的图像变换
2、现有能力特征:具有一定归纳、概括、类比、抽象思维能力
3、现有情感态度对高次或超越方程的解法具有强烈求知欲和渴望探究的积极情感态度
教学目标:
知识与技能:(1)结合二次函数的图像,掌握函数零点的概念,会求简单函数的零点
(2)理解方程的根和函数零点的关系
(3)理解函数的零点存在的判定条件,能利用函数性质判定方程解的存在性
过程与方法:通过本节的学习让学生掌握由“特殊到一般”的认知规律,在今后学习中利用这一规律探索更多的未知世界
情感态度与价值观:在函数与方程的联系中体验数学中的转化思想和函数思想的意义及价值
教学重点:理解方程的根与函数零点的关系,体会函数与方程的思想,掌握方程解的存在性的判定方法。
教学难点:方程解的存在性的判定。
重、难点突破措施:
(1)由熟到生,以情激人
创设情境中,由熟到生解方程开题,扣人心弦,层层探究,步步为营,丝丝入扣,激发热情。
(2)数形结合,分类讨论
通过简单实例,数形结合,探究总结规律;利用分类讨论的数学思想突破重难点。
(3)合作探究,分层提高
利用合作探究、分层训练和分层作业达到因材施教的效果。
教学过程设计:
一、问题引入:
方程和函数是中学代数的重要内容。在初中我们曾学习了一元一次方程、一元二次方程的解法并掌握了一些方程的求解公式。实际上绝大部分方
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源