《反函数》教案
- 资源简介:
约3510字。
反函数
教学目标
1.使学生正确理解反函数的概念,初步掌握求反函数的方法.
2.培养学生分析问题、解决问题的能力及抽象概括的能力.
3.使学生思维的深刻性进一步完善.
教学重点与难点
教学重点是求反函数的技能训练.
教学难点是反函数概念的理解.
教学过程设计
一、揭示课题
师:今天我们将学习函数中一个重要的概念——反函数.
(板书:反函数 1.反函数的概念)
二、讲解新课
师:什么是反函数呢?让我们一起来思考这样一个问题:在函数y=2x+1中,如果把x当作因变量,把y当作自变量,能否构成一个函数呢?
生:可以构成一个函数.
师:为什么是个函数呢?
一的x与之相对应.
师:根据这位同学的表述,这是符合函数定义的,也就是说,按照上述原则,函数y=2x+1是存在反函数的.这个反函数的解析式是怎样的呢?
师:这种表示方法是没有问题的,但不符合我们的习惯,按习惯用字母x表示自变量,用字母y表示因变量,故这个函数的解析式又可以
是不是同一函数呢?
生:是.
师:能具体解释一下吗?
和值域,皆为R,同时对应法则都是自变量减1除以2得因变量,也是相同的,所以它们是相同的函数.
生:有.就是y=2x+1.
那么,是不是所有函数都会有反函数呢?
生:不是所有函数都有反函数.
师:能举个例子说明吗?
生:如函数y=x2,将y当作自变量,x当作因变量,在y允许取值范围内,一个y可能对应两个x,如y=1,则对应x=±1,因此不能构成函数,说明它没有反函数.
师:说得非常好.如果从形的角度来解释,会看得更清楚,见图1,从图中可看出给出一个y能对应两个x.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源