约3500字。
1.3.1 单调性与最大(小)值
各位老师,大家好!
今天我说课的课题是:人教版高中数学必修模块一第一章第三节“函数的基本性质” 中“单调性与最大(小)值”的第一课时,下面,我将从教材分析、学法分析、教法分析、教辅手段、教学过程、板书设计等六个方面对本课时的教学设计进行说明.
一、教材分析
(一)教材特点、教材的地位与作用
1、教材特点
本节课内容教材共分两课时进行,这是第一课时,本课时主要学习函数的单调性的概念,依据函数图象判断函数的单调性和依据定义证明函数的单调性。
2、教材的地位与作用
本节课是在学生学习了函数概念的基础上所研究的函数的一个重要性质。函数单调性的概念是研究具体函数函数单调性的一句,在研究函数的值域、定义域、最值等性质中有重要应用;在解不等式、证明不等式、数列的性质等数学的其他内容的研究中也有重要的应用。可见,不论在函数内部还是在外部,函数的单调性都有重要应用,因而在数学中具有核心地位。此外函数单调性的研究方法也具有典型意义,体现了对函数研究的一般方法。这就是,加强“数”与“形”的结合,由直观到抽象;由特殊到一半。首先借助对函数图像的观察、分析、归纳,发现函数的增、减变化的直观特征,进一步量化,发现增、减变化数字特征,从而进一步用数学符号刻画。
(二)教学内容
本学时的主要学习内容是:
1、通过图象判断函数的单调性,理解函数单调性的概念;
2、掌握用定义判断一些简单函数的单调性;
(三)重点、难点
1、本课时的教学重点是:形成增减函数的形式化定义
2、本课时的教学难点是:形成增减函数感念的过程中,如何从图像升降的直观认识过渡到函数增减的数学符号语言表述;用定义证明函数的单调性。
(四)教学目标
1、知识与技能
(1)使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性。
(2)启发学生发现问题和提出问题,培养学生分析问题、认识问题和解决问题的能力。
(3)通过观察-猜想-推理-证明这一个重要的思想方法,进一步培养学生的逻辑推理能力和创新意识。
2、过程与方法
(1)通过渗透数形结合的数学思想,对学生进行辨证唯物主义的思想教育。
(2)探究与活动,明白考虑问题要细致,说理要明确。
3、情感、态度与价值观:理性描述生活中的增长、递减现象。
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源