《柱体、锥体、台体的表面积》教案1
- 资源简介:
约2750字。
第一课时 柱体、锥体、台体的表面积
(一)教学目标
1.知识与技能
(1)了解柱体、锥体与台体的表面积(不要求记忆公式).
(2)能运用公式求解柱体、锥体和台体的全面积.
(3)培养学生空间想象能力和思维能力.
2.过程与方法
让学生经历几何体的侧面展开过程,感知几何体的形状,培养转化化归能力.
3.情感、态度与价值观
通过学习,使学生感受到几面体表面积的求解过程,激发学生探索创新的意识,增强学习的积极性.
(二)教学重点、难点
重点:柱体、锥体、台体的表面积公式的推导与计算.
难点:展开图与空间几何体的转化.
(三)教学方法
学导式:学生分析交流与教师引导、讲授相结合.
教学环节 教学内容 师生互动 设计意图
新课导入 问题:现有一棱长为1的正方体盒子AC′,一只蚂蚁从A点出发经侧面到达A′点,问这只蚂蚁走边的最短路程是多少?
学生先思考讨论,然后回答.
学生:将正方体沿AA′展开得到一个由四个小正方形组成的大矩形如图
则 即所求.
师:(肯定后)这个题考查的是正方体展开图的应用,这节课,我们围绕几何体的展开图讨论几何体的表面积. 情境生动,激发热情教师顺势带出主题.
探索新知 1.空间多面体的展开图与表面积的计算.
(1)探索三棱柱、三棱锥、三棱台的展开图.
(2)已知棱长为a,各面均为等边三角形S – ABC (图1.3—2),求它的表面积.
解:先求△SBC的面积,过点S作SD⊥BC,交B于D,因为BC = a,
∴ .
∴四面体S – ABC的表面积
.
师:在初中,我们已知学习了正方体和长方体的表面积以及它们的展开图,你知道上述几何体的展开图与其表面积的关系吗?
生:相等.
师:对于一个一般的多面,你会怎样求它的表面积.
生:多面体的表面积就是各个面的面积之和,我们可以把它展成平面图形,利用平面图形求面积的方法求解.
师:(肯定)棱柱、棱锥、棱台边是由多个平面图形围成的多面体,它们的展开图是什么?如何计算它们的体积?
……
生:它的表面积都等于表面积与侧面积之和.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源