约1180字。
第二十一课时 对数(2)
学习要求
1.掌握对数的运算性质,并能理解推导这些法则的依据和过程;
2.能较熟练地运用这些法则和联系的观点解决问题;
自学评价
1.指数幂运算的性质
(1)
(2)(3)
2. 对数的运算性质
如果 a > 0 , a ¹ 1, M > 0 ,N > 0, 那么
(1);
(2)
(3)
说明:(1)语言表达:“积的对数 = 对数的和”……(简易表达以帮助记忆);
(2)注意有时必须逆向运算:如 ;
(3)注意性质的使用条件:每一个对数都要有意义。
是不成立的,
是不成立的(4)当心记忆错误:
,试举反例, ,试举反例。
(5)对数的运算性质实际上是将积、商、幂的运算分别转化为对数的加、减、乘的运算。
【精典范例】
例1:用,,表示下列各式:(1);(2).
分析:应用对数运算的性质可直接得出。
【解】(1)原式;
(2)原式
例2:求下列各式的值:
(1); (2);
(3);
(4)
【解】
(1)
(2)
(3)
(4)
点评: 熟练掌握对数的运算性质并能逆用性质是解题的关键。
例3:已知,求下列各式的值(结果保留4位小数):
(1) ; (2)
【解】(1)
(2)
点评:寻找已知条件与所求结论的内在联系这是解题的一般途径。。
例4:计算:(1)14;;
(3)
【解】(1)解法一:
解法二:
=;
(2)原式
(3)原式
点评:灵活运用对数运算法则进行对数运算,要注意法则的正用和逆用。在化简变形的过程中,要善于观察比较和分析,从而选择快捷、有效的运算方案。
是一个重要的结论。
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源