约1100字。
第二十二课时 对数(3)
学习要求
1.初步掌握对数运算的换底公式及其简单应用。
2.培养学生的数学应用意识。
自学评价
1.对数换底公式
2.说明:由换底公式可得以下常见结论(也称变形公式):
① ;
② ;
③
3.换底公式的意义是把一个对数式的底数改变,可将不同底问题化为同底,便于使用运算法则,所以利用换底公式可以解决一些对数的底不同的对数运算。
【精典范例】
例1:计算
(1)
(2)
(3)
分析:这是底不同的对数运算,可考虑用对数换底公式求解。
【解】
(1)原式
(2)原式
另解:原式(3)原式
点评: 利用换底公式“化异为同”是解决有关对数问题的基本思想方法,它在求值或恒等变形中起了重要作用,在解题过程中应注意:
⑴针对具体问题,选择恰当的底数;
⑵注意换底公式与对数运算法则结合使用;
⑶换底公式的正用与逆用;
(4) 变形公式可简化运算。
例2:1)已知,试用表示
(2)已知,,用、表示
(3)已知,用表示
【解】(1)
∵
∴
(2)∵,
∴
(3)由,得
∴
点评:当一个题目中同时出现指数式和对数式时,一般要把问题转化,统一到一种表达式上,在求解过程中,根据题目的需要,将指数式转化为对数式,或将对数式转化为指数式,这正是数学数学转化思想的具体表现。
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源