《平方根》教案6

  • 手机网页: 浏览手机版
  • 资源类别: 人教版 / 初中教案 / 七年级下册教案
  • 文件类型: doc
  • 资源大小: 14 KB
  • 资源评级:
  • 更新时间: 2011/3/11 21:22:24
  • 资源来源: 会员转发
  • 资源提供: renheren [资源集]
  • 下载情况: 本月:获取中 总计:获取中
  • 下载点数: 获取中 下载点  如何增加下载点
  •  点此下载传统下载

资源简介:

约2050字。

  平方根(二)
  教学目标 1、会用计算器求一个数的算术平方根;理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律;
  2、能用夹值法求一个数的算术平方根的近似值;
  3、体验“无限不循环小数”的含义,感受存在着不同于有理数的一类新数。
  教学难点 夹值法及估计一个(无理)数的大小的思想。
  知识重点 夹值法及估计一个(无理)数的大小。
  教学过程(师生活动) 设计理念
  情境导入 我们已经知道:正数x满足 =a,则称x是a的算术平方根.当a恰是一个数的平方数时,我们已经能求出它的算术平方根了,例如, =4;但当a不是一个数的平方数时,它的算术平方根又该怎祥求呢?例如课本第161页的大正方形的边长 等于多少呢?
  问题: 究竟有多大?
  建议:1、先让学生思考讨论并估计大概有多大,在此基础上按书本讲解并板书.可以这样提出问题并讲解:由直观可知招大于1而小于2,那么了 是1点几呢?(接下来由试验可得到平方数最接近2的1位小数是1.4,而平方数大于2且最接近的1位小数是1.5, 大于1.4而小于1.5......
  这里默认了非负数a和b当a<b时, 这里可以从 得到。
  2、用夹值法去逼近一个(无理)数,是一个重要的求近似数的方法,也是一种无限逼近的数学思想,教师应加以重视,让学生体验它的妙处.
  3、关于 是一个“无限不循环小数”要向学生详细说明.为无理数的概念的提出打下基础.
  归纳(提出问题):你对正数a的算术平方根 的结果有怎样的认识呢?
  的结果有两种情:当a是完全平方数时, 是一个有限数;当a不是一个完全平方数时, 是一个无限不循环小数。
  在 出现之前,学生已经知道利用乘方运算,通过观察的方法求一些完全平方数的算术平方根,但是对于像2这样的非完全平方数,如何求它的算术平方根,对学生来讲是一个新问题.
  教科书给出两种求 的方法:一种是估算,一种是使用计算器.对于第一方法,教科书利用夹值的办法,夹值法是重要的有效的求近似值的方法,所以应详细讲解.
  对于无限不循环小数这个概念,教学时可以适当回忆以前学生学过的数,通过比较,了解无限不循环小数的特征,为后面学习实数做铺垫。

 点此下载传统下载搜索更多相关资源
  • 说明:“点此下载”为无刷新无重复下载提示方式;“传统下载”为打开新页面进行下载,有重复下载提示。
  • 提示:非零点资源点击后将会扣点,不确认下载请勿点击。
  • 我要评价有奖报错加入收藏下载帮助

下载说明:

  • 没有确认下载前请不要点击“点此下载”、“传统下载”,点击后将会启动下载程序并扣除相应点数。
  • 如果资源不能正常使用或下载请点击有奖报错,报错证实将补点并奖励!
  • 为确保所下资源能正常使用,请使用[WinRAR v3.8]或以上版本解压本站资源。
  • 站内部分资源并非原创,若无意中侵犯到您的权利,敬请来信联系我们。

资源评论

共有 0位用户发表了评论 查看完整内容我要评价此资源