约6920字。
“第三届全国高中青年教师优秀课观摩与评比活动”说课参赛教案
任意角的三角函数(第一课时)
云南省曲靖市第一中学 张国坤
教材:人民教育出版社中学数学室编《全日制普通高级中学教科书(必修)•数学•第一册(下)》(2003年12月第一版,2005年11月第三次印刷).
一、 教学目标
1.掌握任意角的正弦、余弦、正切函数的定义(包括定义域、正负符号判断);了解任意角的余切、正割、余割函数的定义.
2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概念的产生、发展过程. 领悟直角坐标系的工具功能,丰富数形结合的经验.
3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的辩证唯物主义世界观.
4.培养学生求真务实、实事求是的科学态度.
二、 重点、难点、关键
重点:任意角的正弦、余弦、正切函数的定义、定义域、(正负)符号判断法.
难点:把三角函数理解为以实数为自变量的函数.
关键:如何想到建立直角坐标系;六个比值的确定性( α确定,比值也随之确定)与依赖性(比值随着α的变化而变化).
三、 教学理念和方法
教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程.
根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用“启发探索、讲练结合”的方法组织教学.
四、 教学过程
[执教线索:
回想再认:函数的概念、锐角三角函数定义(锐角三角形边角关系)——问题情境:能推广到任意角吗?——它山之石:建立直角坐标系(为何?)——优化认知:用直角坐标系研究锐角三角函数——探索发展:对任意角研究六个比值(与角之间的关系:确定性、依赖性,满足函数定义吗?)——自主定义:任意角三角函数定义——登高望远:三角函数的要素分析(对应法则、定义域、值域与正负符号判定)——例题与练习——回顾小结——布置作业]
(一)复习引入、回想再认
开门见山,面对全体学生提问:
在初中我们初步学习了锐角三角函数,前几节课,我们把锐角推广到了任意角,学习了角度制和弧度制,这节课该研究什么呢?
探索任意角的三角函数(板书课题),请同学们回想,再明确一下:
(情景1)什么叫函数?或者说函数是怎样定义的?
让学生回想后再点名回答,投影显示规范的定义,教师根据回答情况进行修正、强调:
传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,x叫做自变量,自变量x的取值范围叫做函数的定义域.
现代定义:设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数,在集合B中都有唯一确定的数 f(x)和它对应,那么就称映射ƒ:A→B为从集合A到集合B的一个函数,记作:y= f(x),x∈A ,其中x叫自变量,自变量x的取值范围A叫做函数的定义域.
设计意图:
函数和三角函数是一般和特殊的关系,是共性和个性的关系,学生已经学习了函数的概念,因此对三角函数的学习就是一个从一般到特殊的演绎的过程,也是以具体函数丰富函数概念的过程. 教学经验表明:学生对函数两种定义的记忆是有一定困难的,容易遗忘,此处让学生对函数概念进行回想再认,目的在于明确函数概念的本质,为演绎学习任意角三角函数概念作好知识和认知准备.
(情景2)我们在初中通过锐角三角形的边角关系,学习了锐角的正弦、余弦、正切等三个三角函数. 请回想:这三个三角函数分别是怎样规定的?
学生口述后再投影展示,教师再根据投影进行强调:
设计意图:
学生在初中学习了锐角的三角函数概念,现在学习任意角的三角函数,又是一种推广和拓展的过程(类似于从有理数到实数的扩展). 温故知新,要让学生体会知识的产生、发展过程,就要从源头上开始,从学生现有认知状况开始,对锐角三角函数的复习就必不可少.
(二) 引伸铺垫、创设情景
(情景3)我们已经把锐角推广到了任意角,锐角的三角函数概念也能推广到任意角吗?试试看,可以独立思考和探索,也可以互相讨论!
留时间让学生独立思考或自由讨论,教师参与讨论或巡回对学困生作启发引导.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源