2011届高三数学一轮复习教案
- 资源简介:
2011届高三数学一轮复习教案
├─10第十章 算法初步、框图
│本章自主测试(算法).doc
│第2课 流程图.doc
│第三课 算法语句.doc
│第十章 算法初(1).doc
│第四课 算法语句.doc
├─11第十一章 统计与概率
│~$本章自主测试.doc
│抽样本章自主测试.doc
│第1课 抽样方法.doc
│第2课 总体分布的估计.doc
│第3课 总体特征数的估计.doc
│第4课 案例分析.doc
│第5课 古典概型.doc
│第6课几何概型.doc
│第7课 互斥事件及其概率.doc
├─12第十二章 导数及其应用(含定积分)
│教师用导数及其应用1.doc
│教师用导数及其应用2.doc
│教师用导数及其应用3.doc
│教师用导数及其应用4.doc
│教师用导数及其应用检测.doc
├─1第一章集合与简易逻辑
│~$课时 命题及逻辑联结词.doc
│第1课时 集合概念及其运算.doc
│第2课时 命题及逻辑联结词.doc
│第3课时 充分条件和必要条件.doc
│集合章节自主测试.doc
├─2第二章 函数
│函数章节自主测试.doc
│第八节 指数函数及其性质.doc
│第二节 函数表示方法.doc
│第九节 对数函数及其性质.doc
│第六节 二次函数.doc
│第七节 指数式与对数式.doc
│第三节 函数的单调性.doc
│第十节 函数与方程.doc
│第十一节 函数的应用.doc
│第四节 函数的奇偶性.doc
│第五节 函数的图像.doc
│第一节 函数概念.doc
├─4第四章 向量与复数
│平面向量与复数汇总.doc
├─5第五章 数列
│第1课 数列的概念.doc
│第2课 等差、等比数列.doc
│第3课 数列的求和.doc
│第4课 数列的应用.doc
│高三数列小题练习六.doc
├─6第六章 不等式
│不等式汇总.doc
├─7第七章 立体几何初步
│教师用立体几何1.doc
│教师用立体几何2.doc
│教师用立体几何3.doc
│教师用立体几何4.doc
│教师用立体几何初步检测.doc
├─8第八章 直线和圆的方程
│直线和圆的方程汇总.doc
├─9第九章 圆锥曲线与方程
│圆锥曲线汇总.doc
└─高三一轮: 三角函数
三角函数章节自主测试.doc
第八节 解三角形.doc
第二节同角三角函数关系及诱导公式.doc
第九节 三角函数的应用.doc
第六节 三角函数的图像和性质(二).doc
第七节 三角函数的值域.doc
第三节 两角和与差及倍角公式(1).doc
第四节 两角和与差及倍角公式(2).doc
第五节 三角函数的图像和性质(一).doc
第一节 三角函数.doc第1课时 集合的概念及运算
【考点导读】
1. 了解集合的含义,体会元素与集合的属于关系;能选择自然语言,图形语言,集合语言描述不同的具体问题,感受集合语言的意义和作用.
2. 理解集合之间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义.
3. 理解两个集合的交集与并集的含义,会求两个集合的交集与并集;理解在给定集合中一个子集补集的含义,会求给定子集的补集;能使用文氏图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.
4. 集合问题常与函数,方程,不等式有关,其中字母系数的函数,方程,不等式要复杂一些,综合性较强,往往渗透数形思想和分类讨论思想.
【基础练习】
1.集合 用列举法表示 .
【方法点拨】
函数是中学数学中最重要,最基础的内容之一,是学习高等数学的基础.高中函数以具体的幂函数,指数函数,对数函数和三角函数的概念,性质和图像为主要研究对象,适当研究分段函数,含绝对值的函数和抽象函数;同时要对初中所学二次函数作深入理解.
1.活用“定义法”解题.定义是一切法则与性质的基础,是解题的基本出发点.利用定义,可直接判断所给的对应是否满足函数的条件,证明或判断函数的单调性和奇偶性等.
2.重视“数形结合思想”渗透.“数缺形时少直观,形缺数时难入微”.当你所研究的问题较为抽象时,当你的思维陷入困境时,当你对杂乱无章的条件感到头绪混乱时,一个很好的建议:画个图像!利用图形的直观性,可迅速地破解问题,乃至最终解决问题.
3.强化“分类讨论思想”应用.分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法.进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”.
第10 课 函数与方程
【考点导读】
1.能利用二次函数的图像与判别式的正负,判断一元二次方程根的存在性及根的个数,了解函数零点与方程根的联系.
2.能借助计算器用二分法求方程的近似解,并理解二分法的实质.
3.体验并理解函数与方程的相互转化的数学思想方法.
【基础练习】
1.函数 在区间 有_____1 ___个零点.
2.已知函数 的图像是连续的,且 与 有如下的对应值表:
1 2 3 4 5 6
-2.3 3.4 0 -1.3 -3.4 3.4
则 在区间 上的零点至少有___3__个.
3.方程 在区间 内的近似解为___0.3___(精确到0.1).
4. 已知函数 的零点所在区间为 ,则m=____2____.
5. 已知函数 的一个零点比1大,一个零点比1小,则实数a的取值范围______________.
【范例解析】
第四章 平面向量与复数
【知识图解】
Ⅰ.平面向量知识结构表
Ⅱ.复数的知识结构表
【方法点拨】
由于向量融形、数于一体,具有几何形式与代数形式的“双重身份”,使它成为了中学数学知识的一个重要交汇点,成为联系众多知识内容的媒介。所以,向量成为了“在知识网络交汇处设计试题”的很好载体。从高考新课程卷来看,对向量的考查力度在逐年加大,除了直接考查平面向量外,将向量与解析几何、向量与三角等内容相结合,在知识交汇点处命题,既是当今高考的热点,又是重点。
第五章 数列
【知识图解】
【方法点拨】
1.学会从特殊到一般的观察、分析、思考,学会归纳、猜想、验证.
2.强化基本量思想,并在确定基本量时注重设变量的技巧与解方程组的技巧.
3.在重点掌握等差、等比数列的通项公式、求和公式、中项等基础知识的同时,会针对可化为等差(比)数列的比较简单的数列进行化归与转化.
4.一些简单特殊数列的求通项与求和问题,应注重通性通法的复习.如错位相减法、迭加法、迭乘法等.
5.增强用数学的意识,会针对有关应用问题,建立数学模型,并求出其解.
不等式
【知识图解】
【方法点拨】
不等式是高中数学的重要内容之一,不等式的性质是解、证不等式的基础,两个正数的算术平均数不小于它们的几何平均数的定理及其变形在不等式的证明和解决有关不等式的实际问题中发挥着重要的作用.解不等式是研究方程和函数的重要工具,不等式的概念和性质涉及到求最大(小)值,比较大小,求参数的取值范围等,不等式的解法包括解不等式和求参数,不等式的综合题主要是不等式与集合、函数、数列、三角函数、解析几何、导数等知识的综合,综合性强,难度较大,是高考命题的热点,也是高考复习的难点.
【方法点拨】
立体几何研究的是现实空间,认识空间图形,可以培养学生的空间想象能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力。空间的元素是点、线、面、体,对于线线、线面、面面的位置关系着重研究它们之间的平行与垂直关系,几何体着重研究棱柱、棱锥和球。在复习时我们要以下几点:
1.注意提高空间想象能力。在复习过程中要注意:将文字语言转化为图形,并明确已知元素之间的位置关系及度量关系;借助图形来反映并思考未知的空间形状与位置关系;能从复杂图形中逻辑的分析出基本图形和位置关系,并借助直观感觉展开联想与猜想,进行推理与计算。
第八章 直线和圆的方程
【知识图解】
【方法点拨】
1.掌握直线的倾斜角,斜率以及直线方程的各种形式,能正确地判断两直线位置关系,并能熟练地利用距离公式解决有关问题.注意直线方程各种形式应用的条件.了解二元一次不等式表示的平面区域,能解决一些简单的线性规划问题.
2.掌握关于点对称及关于直线对称的问题讨论方法,并能够熟练运用对称性来解决问题.
3.熟练运用待定系数法求圆的方程.
4.处理解析几何问题时,主要表现在两个方面:(1)根据图形的性质,建立与之等价的代数结构;(2)根据方程的代数特征洞察并揭示图形的性质.
【方法点拨】
解析几何是高中数学的重要内容之一,也是衔接初等数学和高等数学的纽带。而圆锥曲线是解析几何的重要内容,因而成为高考考查的重点。研究圆锥曲线,无外乎抓住其方程和曲线两大特征。它的方程形式具有代数的特性,而它的图像具有典型的几何特性,因此,它是代数与几何的完美结合。高中阶段所学习和研究的圆锥曲线主要包括三类:椭圆、双曲线和抛物线。圆锥曲线问题的基本特点是解题思路比较简单清晰,解题方法的规律性比较强,但是运算过程往往比较复杂,对学生运算能力,恒等变形能力,数形结合能力及综合运用各种数学知识和方法的能力要求较高。
第2课 流程图
【考点导读】
了解常用流程图符号的意义,能用流程图表示顺序,选择,循环这三种基本结构,并能识别简单的流程图所描述的算法.高考要求对流程图有最基本的认识,并能解决相关的简单问题.
【基础练习】
1.算法的三种基本结构是 顺序结构、选择结构、循环结构 .
2.流程图中表示判断框的是 菱形框 .
3.根据题意,完成流程图填空:
这是一个输入两个数,输出这两个数差的绝对值的一个算法.
请将空格部分填上适当的内容
(1) a>b ;(2) b-a
第十一章 统计与概率
【知识图解】
【方法点拨】
1、 准确理解公式和区分各种不同的概念
正确使用概率的加法公式与乘法公式、随机变量的数学期望与方差的计算公式.注意事件的独立性与互斥性是两个不同的概念,古典概型与几何概型都是等可能事件,对立事件一定是互斥事件,反之却未必成立.
2、 掌握抽象的方法
抽象分为简单的随机抽样、系统抽样、分层抽样.系统抽样适用于总体较多情况,分层抽样适用于总体由几个差异明显的部分组成的情况.
第十二章 导数及其应用
【知识图解】
【方法点拨】
导数的应用极其广泛,是研究函数性质、证明不等式、研究曲线的切线和解决一些实际问题的有力工具,也是提出问题、分析问题和进行理性思维训练的良好素材。同时,导数是初等数学与高等数学紧密衔接的重要内容,体现了高等数学思想及方法。
1.重视导数的实际背景。导数概念本身有着丰富的实际意义,对导数概念的深刻理解应该从这些实际背景出发,如平均变化率、瞬时变化率和瞬时速度、加速度等。这为我们解决实际问题提供了新的工具,应深刻理解并灵活运用。
资源评论
共有 1位用户发表了评论 查看完整内容我要评价此资源