《双曲线的简单几何性质》教案

  • 手机网页: 浏览手机版
  • 资源类别: 人教课标版 / 高中教案 / 选修一教案
  • 文件类型: doc
  • 资源大小: 73 KB
  • 资源评级:
  • 更新时间: 2010/3/25 16:38:32
  • 资源来源: 会员转发
  • 资源提供: wulinb1 [资源集]
  • 下载情况: 本月:获取中 总计:获取中
  • 下载点数: 获取中 下载点  如何增加下载点
  •  点此下载传统下载

资源简介:

约1660字。

  《双曲线的简单几何性质》教案
  知识与技能目标
  了解平面解析几何研究的主要问题:(1)根据条件,求出表示曲线的方程;(2)通过方程,研究曲线的性质.理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念;掌握双曲线的标准方程、会用双曲线的定义解决实际问题;通过例题和探究了解双曲线的第二定义,准线及焦半径的概念,利用信息技术进一步见识圆锥曲线的统一定义.
  过程与方法目标
  (1)复习与引入过程
  引导学生复习得到椭圆的简单的几何性质的方法,在本节课中不仅要注意通过对双曲线的标准方程的讨论,研究双曲线的几何性质的理解和应用,而且还注意对这种研究方法的进一步地培养.①由双曲线的标准方程和非负实数的概念能得到双曲线的范围;②由方程的性质得到双曲线的对称性;③由圆锥曲线顶点的统一定义,容易得出双曲线的顶点的坐标及实轴、虚轴的概念;④应用信息技术的《几何画板》探究双曲线的渐近线问题;⑤类比椭圆通过 的思考问题,探究双曲线的扁平程度量椭圆的离心率.〖板书〗§2.2.2双曲线的简单几何性质.
  (2)新课讲授过程
  (i)通过复习和预习,对双曲线的标准方程的讨论来研究双曲线的几何性质.
  提问:研究双曲线的几何特征有什么意义?从哪些方面来研究?
  通过对双曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点、渐近线及其他特征性质来研究曲线的几何性质.
  (ii)双曲线的简单几何性质
  ①范围:由双曲线的标准方程得, ,进一步得: ,或 .这说明双曲线在不等式 ,或 所表示的区域;
  ②对称性:由以 代 ,以 代 和 代 ,且以 代 这三个方面来研究双曲线的标准方程发生变化没有,从而得到双曲线是以 轴和 轴为对称轴,原点为对称中心;
  ③顶点:圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点.因此双曲线有两个顶点,由于双曲线的对称轴有实虚之分,焦点所在的对称轴叫做实轴,焦点不在的对称轴叫做虚轴;
  ④渐近线:直线 叫做双曲线 的渐近线;
  ⑤离心率: 双曲线的焦距与实轴长的比 叫做双曲线的离心率( ).
  (iii)例题讲解与引申、扩展
  例3 求双曲线 的实半轴长和虚半轴长、焦点的坐标、离心率、渐近线方程.
  分析:由双曲线的方程化为标准方程,容易求出 .引导学生用双曲线的实半轴长、虚半轴长、离心率、焦点和渐近线的定义即可求相关量或式子,但要注意焦点在 轴上的渐近线是 .

 点此下载传统下载搜索更多相关资源
  • 说明:“点此下载”为无刷新无重复下载提示方式;“传统下载”为打开新页面进行下载,有重复下载提示。
  • 提示:非零点资源点击后将会扣点,不确认下载请勿点击。
  • 我要评价有奖报错加入收藏下载帮助

下载说明:

  • 没有确认下载前请不要点击“点此下载”、“传统下载”,点击后将会启动下载程序并扣除相应点数。
  • 如果资源不能正常使用或下载请点击有奖报错,报错证实将补点并奖励!
  • 为确保所下资源能正常使用,请使用[WinRAR v3.8]或以上版本解压本站资源。
  • 站内部分资源并非原创,若无意中侵犯到您的权利,敬请来信联系我们。

资源评论

共有 0位用户发表了评论 查看完整内容我要评价此资源