约2240字。
§1.1.1 算法的概念
教学目标:
(1) 了解算法的含义,体会算法的思想。
(2) 能够用自然语言叙述算法。
(3) 掌握正确的算法应满足的要求。
(4) 会写出解线性方程(组)的算法。
教学重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。.
教学难点:把自然语言转化为算法语言。.
学法:1、写出的算法,必须能解决一类问题(如:判断一个整数n(n>1)是否为质数;求任意一个方程的近似解;……),并且能够重复使用。
2、要使算法尽量简单、步骤尽量少。
3、要保证算法正确,且计算机能够执行,如:让计算机计算1×2×3×4×5是可以做到的,但让计算机去执行“倒一杯水”“替我理发”等则是做不到的。
教学过程:一、本章章头图说明
章头图体现了中国古代数学与现代计算机科学的联系,它们的基础都是“算法”。
算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触算法概念。但是我们却从小学就开始接触算法,熟悉许多问题的算法。如,做四则运算要先乘除后加减,从里往外脱括弧,竖式笔算等都是算法,至于乘法口诀、珠算口诀更是算法的具体体现。广义地说,算法就是做某一件事的步骤或程序。菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算法,歌谱是一首歌曲的算法。在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序。
古代的计算工具:算筹与算盘.
20世纪最伟大的发明:计算机,计算机是强大的实现各种算法的工具。
例1:解二元一次方程组:
分析:解二元一次方程组的主要思想是消元的思想,有代入消元和加减消元两种消元的方法,下面用加减消元法写出它的求解过程.
解:第一步:② - ①×2,得: 5y=3; ③
第二步:解③得 ;
第三步:将 代入①,得 .
学生探究:对于一般的二元一次方程组来说,上述步骤应该怎样进一
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源