约4830字。
正弦定理(1)
一、教学内容分析:
《普通高中课程标准数学教科书•数学(必修5)》(人教A版)第一章《解三角形》: “正弦定理和余弦定理”的第1课。“解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。解三角形作为几何度量问题,应突出几何的作用和数量化的思想,为学生进一步学习数学奠定基础。本课“正弦定理”,作为单元的起始课,为后续内容作知识与方法的准备,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),解决简单的三角形度量问题。教学过程中,应发挥学生的主动性,通过探索发现、合情推理与演绎证明的过程,提高学生的思辨能力。
二、学生学习情况分析:
由于本课内容和一些与测量、几何计算有关的实际问题相关,教学中若能注意课程与生活实际的联系,注重知识的发生过程,定能激起学生的学习兴趣。当然本课涉及代数推理,定理证明中可能涉及多方面的知识方法,综合性强,学生学习方面有一定困难。
三、设计思想:
定理教学中有一种简陋的处理方式:简单直接的定理呈现、照本宣科的定理证明,然后是大剂量的“复制例题”式的应用练习。本课采用实验探究、自主学习、合作交流的研究性学习方式,重点放在定理的形成、证明的探究及定理基本应用上,努力挖掘定理教学中蕴涵的思维价值。从实际问题出发,引入数学课题,最后把所学知识应用于实际问题。
四、教学目标:
让学生从已有的知识经验出发,通过对特殊三角形边角间数量关系的探求,发现正弦定理;再由特殊到一般,从定性到定量,探究在任意三角形中,边与其对角的关系,引导学生通过观察,猜想,比较,推导正弦定理,由此培养学生合情推理探索数学规律的数学思考能力;培养学生联想与引申的能力,探索的精神与创新的意识,同时通过三角函数、向量与正弦定理等知识间的联系来帮助学生初步树立事物之间的普遍联系与辩证统一的唯物主义观点。
五、教学重点与难点:
本节课的重点是正弦定理的探索、证明及其基本应用;难点是正弦定理应用中“已知两边和其中一边的对角解三角形,判断解的个数”,以及逻辑思维能力的培养。
六、教学过程设计:
(一)创设情境:
问题1、在建设水口电站闽江桥时,需预 先测量桥长AB,于是在江边选取一个测量 点C,测得CB=435m,∠CBA= ,∠BCA= 。由以上数据,能测算出桥长AB吗?这是一个什么数学问题?
引出:解三角形——已知三角形的某些边和角,求其他的边和角的过程。
[设计意图:从实际问题出发,引入数学课题。]
师:解三角形,需要用到许多三角形的知识,你对三角形中的边角知识知多少?
生:••••••,“大角对大边,大边对大角”
师:“a>b>c ←→ A>B>C”,这是定性地研究三角形中的边角关系,我们能否更深刻地、从定量的角度研究三角形中的边角关系?
引出课题:“正弦定理
[设计意图:从联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构。]
(二)猜想、实验:
1、发散思维,提出猜想:从定量的角度考察三角形中的边角关系,猜想可能存在哪些关系?
[学情预设:此处,学生根据已有知识“a>b>c ←→ A>B>C”,可能出现以
下答案情形。如
a/A=b/B=c/C,a/sinA=b/sinB=c/sinC, a/cosA=b/cosB=c/cosC,a/tanA=b/tanB=c/tanC,••••••等等。]
[设计意图:培养学生的发散思维,猜想也是一种数学能力]
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源