《正弦定理》教案

  • 手机网页: 浏览手机版
  • 资源类别: 人教课标版 / 高中教案 / 必修五教案
  • 文件类型: doc
  • 资源大小: 227 KB
  • 资源评级:
  • 更新时间: 2009/9/19 9:14:33
  • 资源来源: 会员转发
  • 资源提供: chenfenggao [资源集]
  • 下载情况: 本月:获取中 总计:获取中
  • 下载点数: 获取中 下载点  如何增加下载点
  •  点此下载传统下载

资源简介:
约1530字。
  1.1.1正弦定理
  (一)教学目标
  1.知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
  2. 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
  3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
  (二)教学重、难点
  重点:正弦定理的探索和证明及其基本应用。
  难点:已知两边和其中一边的对角解三角形时判断解的个数。
  (三)学法与教学用具
  学法:引导学生首先从直角三角形中揭示边角关系: ,接着就一般斜三角形进行探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖。
  教学用具:直尺、投影仪、计算器
  (四)教学设想
  [创设情景]
  如图1.1-1,固定 ABC的边CB及 B,使边AC绕着顶点C转动。            A
  思考: C的大小与它的对边AB的长度之间有怎样的数量关系?
  显然,边AB的长度随着其对角 C的大小的增大而增大。能否
  用一个等式把这种关系精确地表示出来?                          C               B
  [探索研究]                                                      (图1.1-1)
  在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ABC中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有 , ,又 ,          A
  则                        b          c
  从而在直角三角形ABC中,              C      a      B
  (图1.1-2)
  思考:那么对于任意的三角形,以上关系式是否仍然成立?
  (由学生讨论、分析)
  可分为锐角三角形和钝角三角形两种情况:
  如图1.1-3,当 ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD= ,则 ,                     C
  同理可得 ,                                  b              a
  从而                                 A         c        B
  (图1.1-3)
  思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
  (证法二):过点A作 ,                             C
  由向量的加法可得     
  则                                 A                  B
 点此下载传统下载搜索更多相关资源
  • 说明:“点此下载”为无刷新无重复下载提示方式;“传统下载”为打开新页面进行下载,有重复下载提示。
  • 提示:非零点资源点击后将会扣点,不确认下载请勿点击。
  • 我要评价有奖报错加入收藏下载帮助

下载说明:

  • 没有确认下载前请不要点击“点此下载”、“传统下载”,点击后将会启动下载程序并扣除相应点数。
  • 如果资源不能正常使用或下载请点击有奖报错,报错证实将补点并奖励!
  • 为确保所下资源能正常使用,请使用[WinRAR v3.8]或以上版本解压本站资源。
  • 站内部分资源并非原创,若无意中侵犯到您的权利,敬请来信联系我们。

资源评论

共有 1位用户发表了评论 查看完整内容我要评价此资源

  • 695662 于06-16 12:08发表评论: 第1楼
  • 很好