约11530字。
《勾股定理的逆定理》教案1
从容说课
本节从古埃及人画直角的方法谈起,然后让学生画一些三角形(已知三边,并且两边的平方和等于第三边的平方).从而发现画出的三角形是直角三角形.猜想如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,即教科书中的命题2,把命题2的条件,结论与上节命题1的条件、结论作比较,引出逆命题的概念.接着探究证明命题2的思路,用三角形全等证明命题2后,顺势引出逆定理的概念。
命题1,命题2属于原命题成立,逆命题也成立的情况.为了防止学生由此误认为原命题成立,逆命题一定成立,教科书特别举例说明有的原命题成立,逆命题不成立.
本节的重点是,如何用三角形三边之间的关系判断一个三角形是否为直角三角形。难点是会应用直角三角形判别方法解决实际问题,教学时要给学生充分交流的时间和空间,让学生学会自主学习.
18.2 勾股定理的逆定理(一)
教学目标
一、知识与技能1.掌握直角三角形的判别条件.2.熟记一些勾股数.3.掌握勾股定理的逆定理的探究方法.
二、过程与方法1.用三边的数量关系来判断一个三角形是否为直角三角形,培养学生数形结合的思想.2.通过对Rt△判别条件的研究,培养学生大胆猜想,勇于探索的创新精神.
三、情感态度与价值观1.通过介绍有关历史资料,激发学生解决问题的愿望.2.通过对勾股定理逆定理的探究;培养学生学习数学的兴趣和创新精神.
教学重点 探究勾股定理的逆定理,理解互逆命题,原命题、逆命题的有关概念及关系.
教学难点 归纳、猜想出命题2的结论.
教具准备 多媒体课件.
教学过程
一、创设问属情境,引入新课
活动1 (1)总结直角三角形有哪些性质. (2)一个三角形,满足什么条件是直角三角形?
设计意图:通过对前面所学知识的归纳总结,联想到用三边的关系是否可以判断一个三角形为直角三角形,提高学生发现反思问题的能力.
师生行为 学生分组讨论,交流总结;教师引导学生回忆.
本活动,教师应重点关注学生: ①能否积极主动地回忆,总结前面学过的旧知识; ②能否“温故知新”.
生:直角三角形有如下性质:(1)有一个角是直角;(2)两个锐角互余,(3)两直角边的平方和等于斜边的平方: (4)在含30°角的直角三角形中,30°的角所对的直角边是斜边的一半.
师:那么,一个三角形满足什么条件,才能是直角三角形呢?
生:有一个内角是90°,那么这个三角形就为直角三角形.
生:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.
师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b斜边c具有一定的数量关系即a2+b2=c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人如何做?
二、讲授新课
活动2 问题:据说古埃及人用下图的方法画直角:把一根长蝇打上等距离的13个结,然后以3个结,4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源