约8170字 第五章 算法初步
算法的含义、程序框图
(一)了解算法的含义,了解算法的思想。
(二)理解程序框图的三种基本逻辑结构:顺序结构、条件结构和循环结构。
算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础。算法初步虽然是新课标增加的内容,但与前面的知识有着密切的联系,并且与实际问题的联系也非常密切。因此,在高考中算法初步知识将与函数、数列、三角、概率、实际问题等知识点进行整合,是高考试题命制的新“靓”点。这样试题就遵循了“在知识网络交汇处设计试题”的命制原则,既符合高考命题“能力立意”的宗旨,又突出了数学的学科特点。这样做,可以从学科的整体高度和思维价值的高度考虑问题,可以揭示数学各知识之间得到的内在联系,可以使考查达到必要的深度。
考查形式与特点是:
(1)选择题、填空题主要考查算法的含义、流程图、基本算法语句等内容,一般在每份试卷中有1~2题,多为中档题出现。
(2)在解答题中可通过让学生读程序框图去解决其它问题,此类试题往往是与数列题结合在一起,具有一定的综合性,可以考查学生的识图能力及对数列知识的掌握情况
第1课时 算法的含义
1.算法的概念:对一类问题的机械的、统一的求解方法称为算法。
2.算法的特性:(1)有限性
(2)确定性
例1.给出求1+2+3+4+5的一个算法。
解:算法1
第一步:计算1+2,得到3
第二步:将第一步中的运算结果3与3相加,得到6
第三步:将第二步中的运算结果6与4相加,得到10
第四步:将第三步中的运算结果10与5相加,得到15
算法2
第一步:取n=5
第二步:计算
第三步:输出运算结果
变式训练1.写出求 的一个算法.
解:第一步:使 ,;
第二步:使 ;
第三步:使 ;
第四步:使 ;
第五步:使 ;
第六步:如果 ,则返回第三步,否则输出 .
例2. 给出一个判断点P 是否在直线y=x-1上的一个算法。
解:第一步:将点P 的坐标带入直线y=x-1的解析式
第二步:若等式成立,则输出点P 在直线y=x-1上
资源评论
共有 1位用户发表了评论 查看完整内容我要评价此资源