约2100字 课 题:9.7直线与平面所成的角和二面角(二)
教学目的:
1.理解二面角及其平面角的概念,能确认图形中的已知角是否为二面角的平面角.
2.掌握二面角的平面角的一般作法:
(1)根据定义;(2)作二面角棱的垂面;(3)利用三垂线定理或逆定理
教学重点:二面角的概念和二面角的平面角的作法
教学难点:二面角的平面角的一般作法及其寻求
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
1 斜线,垂线,射影
⑴垂线 自一点向平面引垂线,垂足叫这点在这个平面上的射影. 这个点和垂足间的线段叫做这点到这个平面的垂线段.
⑵斜线 一条直线和一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线 斜线和平面的交点叫斜足;斜线上一点与斜足间的线段叫这点到这个平面的斜线段
⑶射影 过斜线上斜足外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面内的射影 垂足和斜足间线段叫这点到这个平面的斜线段在这个平面内的射影
直线与平面平行,直线在平面由射影是一条直线 直线与平面垂直射影是点 斜线任一点在平面内的射影一定在斜线的射影上
2.射影长相等定理:从平面外一点向这个平面所引的垂线段和斜线中
⑴射影相交两条斜线相交;射影较长的斜线段也较长
⑵相等的斜线段射影相等,较长的斜线段射影较长
⑶垂线段比任何一条斜线段都短
⑴OB=OCÞAB=AC OB>OCÞAB>AC
⑵AB=ACÞOB=OC AB>ACÞOB>OC
⑶OA<AB,OA<AC
3.直线和平面所成角
(1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角
一直线垂直于平面,所成的角是直角
一直线平行于平面或在平面内,所成角为0°角.
直线和平面所成角范围: [0, ]
(2)定理:斜线和平面所成角是这条斜线和平面内经过斜足的直线所成的一切角中最小的角
4.公式:已知平面a的斜线a与a内一直线b相交成θ角,且a与a相交成j1角,a在a上的射影c与b相交成j2角,则有 .
二、讲解新课:
1 二面角的概念:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面 若棱为 ,两个面分别为 的二面角记为 ;二面角的图形表示:
第一种是卧式法,也称为平卧式:
第二种是立式法,也称为直立式:
2.二面角的平面角:
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源